Prof. Dr. Reinhold Hanel
Thünen-Institute of Fisheries Ecology
Herwigstrasse 31
27572 Bremerhaven
Tel.: +49 47194460200
E-Mail: reinhold.hanel@thuenen.de

Short Cruise Report METEOR M185

Hamburg (Germany) - Lisbon (Portugal)
29.10. - 26.11.2022

Chief Scientist: Prof. Dr. Reinhold Hanel
Master: Detlef Korte

Figure 1: Cruise track of METEOR Cruise M185

Objectives

Starting 50 years ago, a number of ichthyoplankton surveys mostly on board the German Research Vessel Friedrich Heincke were conducted in the Bay of Biscay and around the Iberian Peninsula to assess European eel (Anguilla anguilla) leptocephalus abundance, distribution and growth. The results of these surveys build a valuable baseline, providing reference points for a comparison of the present state with the situation prior to the severe recruitment collapse of this enigmatic species that started after the 1980s.

One of the main tasks of this interdisciplinary survey is to assess the occurrence and abundance of late stage European eel larvae in central parts of their distribution range, just before they complete their first metamorphosis for a life in fresh and brackish water areas. Stable isotope analyses, RNA-based disease analyses and state-of-the-art DNA metabarcoding gut content analyses will substantially increase our knowledge on health status, feeding ecology and diet composition of leptocephalus larvae at a pre-settlement stage. This will enable a better understanding of causes of larval mortality and potential changes in condition of eel larvae compared to the recent past.

The region around the Iberian Peninsula is a highly productive ecosystem with coastal upwelling off Galicia during summer. During the last 30 years, substantial changes in upwelling intensity and primary production have been recorded with higher values from 1989 till 1998 and from 2007 till 2016 and lower values in between. Relatively little is known about the role of zooplankton organisms for energy transfer in this region. Therefore, another major task is to increase our understanding about the entire pelagic food-web, which supports eel larvae arriving in Europe by documenting zooplankton distribution, predator-prey interactions and the energy flux through the pelagic food-web.

Investigations on the carbon pump, the recording of mesopelagic fish in this region using DNA traces in the water together with comparative net catches, the uptake of microplastics by vertically migrating fish species and evolutionary biological adaptations of certain mesopelagic species complete the research portfolio of this cruise.

Cruise Narrative

Survey M185 started on Saturday, October 29, 2022 in Hamburg. The testing of all cruise participants for COVID-19 by the ship's doctor was without positive results and the subsequent tests in the following 5 days also confirmed the result of a COVID-19-free crew.

During our transit to the first working area in the Bay of Biscay, we travelled down the Elbe river into the North Sea and reached the White Cliffs of Dover on Tuesday, 01.11. The weather conditions were perfect for the first two days, but turned to the opposite when reaching the English Channel. Heavy winds and high waves caused by the low-pressure system "Martin" slowed us down and delayed the start of our station work.

Our station work started on the $4^{\text {th }}$ of November at 4 p.m. with our standard sampling scheme of a CTD cast down to 1000 m followed by a Multinet cast down to 600 m and a $1500 \mu \mathrm{~m}$ mesh size Isaacs-Kidd Midwater Trawl (IKMT-S) double oblique haul down to 200 m depth. From this first station at the continental slope off the French coast we ran a north-south-transect along $6^{\circ} 12^{\prime} \mathrm{W}$ longitude to Spanish waters. At station 5 we deployed our $4000 \mu \mathrm{~m}$ mesh size Isaacs-Kidd Midwater Trawl (IKMT-L) in the centre of the Bay of Biscay, before the weather conditions prevented a continuation of our offshore work and forced us to seek shelter on the shelf of the Spanish Asturian coast, where we continued working at 8 stations northwest of the city of Gijón until November 8th. Plankton catches in the Bay of Biscay were dominated by gelatinous organisms of different taxonomic groups. No Anguilliform leptocephalus larvae were found.

Improved weather conditions allowed us to leave the shelf to our first offshore 24-hour-station of Galicia, being moved from the Bay of Biscay due to the bad weather, at sea bottom depth of $>5000 \mathrm{~m}$. The first of two 24 -hour flux stations (Station 14) on $9^{\text {th }} / 10^{\text {th }}$ of November saw the first deployments of the Marine Snow Catchers (MSCs) and the Red Camera Frame (RCF) carrying a number of in-situ cameras.
Marine Snow Catchers offer the opportunity to capture large volumes of water and associated sinking particles, to determine downward flux of particulate organic carbon (POC; the rate of sinking material in a given area). However, this approach only permits study of sinking particles at a limited number of discrete depths in the water column.
The RCF carries four imaging systems (LISST-Holo2; CPICS; UVP5; ECOTriplet) and a CTD logger (RBR Concerto) and affords continuous measurements throughout the water column. By pairing MSC measurements with novel, state-of-the-art camera systems on the RCF, we are able to study sinking particles in far greater resolution from the surface down to 600 m .
Depth-stratified water samples for eDNA filtration together with Multinet and IKMT-S casts completed the sampling protocol for measuring the biological carbon pump.

A second 24-hour flux station was set off the Portuguese coast off the city of Nazaré (Station 24), which we reached after a series of CTD, Multinet and IKMT-S stations on November $13^{\text {th }} / 14^{\text {th }}$. From there we continued our cruise track as originally planned along the Portuguese continental slope into Moroccan waters south to Kenitra, before we turned north again towards the western entrance of the Strait of Gibraltar. While the plankton community changed significantly compared to the Bay of Biscay with increasing numbers of crustacean and fish taxa, also the leptocephalus catches started. Low absolute numbers compared to historic catches seem to reflect the overall
population decline. Data from the ships Acoustic-Doppler-Current-Profiler (ADCP) will tell us more about current conditions at stations with verified European eel larvae occurrences.

Gibraltar Strait is the bottleneck for larval eels to enter the Mediterranean Sea. A 24-hour IKMTS station starting at $20^{\text {th }}$ of November in the centre of the Strait revealed unique oceanographic conditions and corresponding leptocephalus behaviour with obvious current- and light-triggered waves of immigration events.

From the $21^{\text {st }}$ to the $23^{\text {rd }}$ of November we continued our CTD and net sampling along the northern Moroccan coast east to the city of Nador, where our Moroccan observer said goodbye and was picked up by tugboat "Oriental"

With only two more stations left in Spanish waters of the western Alboran Sea, we sampled our last station in the night from $23^{\text {rd }}$ to $24^{\text {th }}$ November, before heading west through Gibraltar Strait and turning north to Lisbon. The remaining steaming time was used for demobilization of the equipment and data consolidation. In the morning of Saturday, the $26^{\text {th }}$ of November the Meteor berthed in the port of Lisbon, terminating cruise M185.

Acknowledgements

The international scientific crew of M185 gratefully acknowledges the very friendly and most effective cooperation with Captain Detlef Korte and his entire crew. Their great flexibility and their perfect assistance substantially contributed to making this cruise a scientific success. We also appreciate the valuable support of the German Research Fleet Coordination Centre (Leitstelle Deutsche Forschungsschiffe) at the University of Hamburg. The expedition was funded by the Deutsche Forschungsgemeinschaft - DFG.

Participants list

1. Prof. Dr. Reinhold Hanel
2. Dr. Lasse Marohn
3. Dr. Klaus Wysujack
4. Dr. Holger Auel
5. Dr. Marko Freese
6. Jan-Dag Pohlmann
7. Tina Blancke
8. Dr. Luis Ferrer
9. Cristina Claver
10. Dr. Maria Blažina
11. Zuzana Konvičková
12. Alix Rommel
13. María Couret
14. Javier Diaz
15. Will Major
16. Jack Williams
17. Rui Monteiro
18. Silvia Blum
19. Kira Kremer
20. Benedikt Merk
21. Peter Müller
22. Greta Voss
23. Sebastian Weis
24. Mostapha Benomar
25. Anett Mieckoleit
26. Martin Stelzner

Chief scientist	Thünen
Fish biology	Thünen
Fish biology	Thünen
Zooplankton food web	BreMare
Fish biology	Thünen
Fish biology	Thünen
Fish biology technician	Thünen
Physical oceanography	AZTI
Environmental DNA	AZTI
Microbial community	RudBos
Fish biology/Genetics	UniPra
Carbon flux/Hydroacoustics	UStA
Carbon flux	ULPGC
Carbon flux	ULPGC
Carbon Flux	NOC
Carbon Flux	NOC
Fish biology	UniLis
Student assistant	UniBre
Journalist	DocDays
Observer Morocco	INRH
Meteorologist	DWD
Tecnician	DWD

Thünen	Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
BreMarE	Bremen University's Centre for Marine Ecological Research, Germany
RudBos	Ruđer Bošković Institute, Zagreb, Croatia
AZTI	AZTI, Spain
UniPra	Charles University Prague, Czech Republic
UStA	University St. Andrews, UK
ULPGC	Universidad de Las Palmas de Gran Canaria, Spain
NOC	National Oceanography Centre Southampton, UK
UniLis	University Lisbon, Portugal
UniBre	University Bremen, Germany
DocDays	DocDays Productions, Berlin, Germany
INRH	National Institute of Fisheries Research, Casablanca, Morocco
DWD	Deutscher Wetterdienst

Station list

Station	Date/Time UTC	Device	Latitude	Longitude	Depth (m)
M185_1-2	04.11.2022 15:51	IKMT-S	47 $17,065^{\prime} \mathrm{N}$	006º 13,477' W	500
M185_1-3	04.11.2022 18:57	CTD	$47^{\circ} 16,027^{\prime} \mathrm{N}$	006º 11,963' W	700
M185_1-4	04.11.2022 20:11	Multinet-Midi	$47^{\circ} 15,871^{\prime} \mathrm{N}$	006 ${ }^{\circ} 12,225^{\prime} \mathrm{W}$	600
M185_2-1	04.11.2022 22:41	CTD	$47^{\circ} 06,012{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 11,963$ ' W	500
M185_2-2	04.11.2022 23:20	IKMT-S	$47^{\circ} 06,176^{\prime} \mathrm{N}$	006 ${ }^{\circ} 12,360$ ' W	600
M185_3-1	05.11.2022 04:37	CTD	$46^{\circ} 36,088^{\prime} \mathrm{N}$	006 ${ }^{\circ} 11,926^{\prime} \mathrm{W}$	800
M185_3-2	05.11.2022 05:57	Multinet-Midi	$46^{\circ} 36,752^{\prime} \mathrm{N}$	006 ${ }^{\circ} 11,743^{\prime} \mathrm{W}$	600
M185_3-3	05.11.2022 07:09	IKMT-S	$46^{\circ} 36,842^{\prime} \mathrm{N}$	006 ${ }^{\circ} 12,414^{\prime} \mathrm{W}$	600
M185_3-4	05.11.2022 09:46	Marine snow catcher	$46^{\circ} 35,818{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 16,894^{\prime} \mathrm{W}$	90
M185_4-1	05.11.2022 13:36	IKMT-S	$46^{\circ} 12,167^{\prime} \mathrm{N}$	006 ${ }^{\circ} 10,360^{\prime} \mathrm{W}$	600
M185_4-2	05.11.2022 15:48	CTD	$46^{\circ} 09,239^{\prime} \mathrm{N}$	006 ${ }^{\circ} 13,342^{\prime} \mathrm{W}$	1100
M185_4-3	05.11.2022 16:59	Multinet-Midi	$46^{\circ} 09,019{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 13,611^{\prime} \mathrm{W}$	600
M185_5-1	05.11.2022 21:39	CTD	$45^{\circ} 35,997{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 11,964^{\prime} \mathrm{W}$	1100
M185_5-2	05.11.2022 22:43	IKMT-S	$45^{\circ} 35,906{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 12,239^{\prime} \mathrm{W}$	200
M185_5-3	06.11.2022 00:32	IKMT-L	$45^{\circ} 34,059^{\prime} \mathrm{N}$	006 ${ }^{\circ} 14,802^{\prime} \mathrm{W}$	200
M185_6-1	06.11.2022 12:54	CTD	$43^{\circ} 46,943 ' \mathrm{~N}$	006 ${ }^{\circ} 12,021^{\prime} \mathrm{W}$	500
M185_6-2	06.11.2022 13:37	IKMT-S	$43^{\circ} 46,978{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 12,115^{\prime} \mathrm{W}$	600
M185_7-1	06.11.2022 19:39	CTD	$43^{\circ} 56,555^{\prime} \mathrm{N}$	006 ${ }^{\circ} 39,546$ ' W	150
M185_7-2	06.11.2022 20:05	IKMT-S	$43^{\circ} 56,934{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 39,677^{\prime} \mathrm{W}$	150
M185_8-1	07.11.2022 01:58	CTD	$43^{\circ} 47,070{ }^{\prime} \mathrm{N}$	006º 22,192' W	210
M185_8-2	07.11.2022 02:47	IKMT-S	$43^{\circ} 47,804{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 22,091^{\prime} \mathrm{W}$	200
M185_9-1	07.11.2022 08:22	CTD	$43^{\circ} 54,070{ }^{\prime} \mathrm{N}$	006${ }^{\circ} 22,164^{\prime} \mathrm{W}$	600
M185_9-2	07.11.2022 09:43	IKMT-S	$43^{\circ} 55,759^{\prime} \mathrm{N}$	006 ${ }^{\circ} 23,488^{\prime} \mathrm{W}$	600
M185_10-1	07.11.2022 15:00	CTD	$43^{\circ} 51,046{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 22,084^{\prime} \mathrm{W}$	650
M185_10-2	07.11.2022 15:48	Multinet-Midi	$43^{\circ} 51,152^{\prime} \mathrm{N}$	006 ${ }^{\circ} 21,824^{\prime} \mathrm{W}$	600
M185_10-3	07.11.2022 16:59	IKMT-S	$43^{\circ} 51,819^{\prime} \mathrm{N}$	006 ${ }^{\circ} 22,259^{\prime} \mathrm{W}$	400
M185_11-1	07.11.2022 21:30	CTD	$43^{\circ} 41,241^{\prime} \mathrm{N}$	006 ${ }^{\circ} 05,384^{\prime} \mathrm{W}$	80
M185_11-2	07.11.2022 21:58	IKMT-S	$43^{\circ} 41,466^{\prime} \mathrm{N}$	006º 05,677' W	100
M185_11-3	07.11.2022 23:10	CTD	$43^{\circ} 43,142^{\prime} \mathrm{N}$	006 ${ }^{\circ} 08,250{ }^{\prime} \mathrm{W}$	200
M185_12-1	08.11.2022 01:58	CTD	$43^{\circ} 41,310^{\prime} \mathrm{N}$	006 ${ }^{\circ} 32,803^{\prime} \mathrm{W}$	80
M185_12-2	08.11.2022 02:26	IKMT-S	$43^{\circ} 41,749^{\prime} \mathrm{N}$	006 ${ }^{\circ} 32,755^{\prime} \mathrm{W}$	150
M185_13-1	08.11.2022 07:02	CTD	$43^{\circ} 54,145^{\prime} \mathrm{N}$	007º 09,668' W	140
M185_14-1	09.11.2022 11:41	IKMT-S	$44^{\circ} 23,189^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,121^{\prime} \mathrm{W}$	200
M185_14-2	09.11.2022 13:07	Multinet-Midi	$44^{\circ} 23,005^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,925^{\prime} \mathrm{W}$	600
M185_14-3	09.11.2022 14:11	IKMT-S	$44^{\circ} 23,427^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,828^{\prime} \mathrm{W}$	200
M185_14-4	09.11.2022 15:42	CTD	$44^{\circ} 23,007{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,058^{\prime} \mathrm{W}$	1000
M185_14-5	09.11.2022 17:38	Marine snow catcher	$44^{\circ} 22,874{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,143^{\prime} \mathrm{W}$	100
M185_14-6	09.11.2022 18:32	Marine snow catcher	$44^{\circ} 22,876{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,203{ }^{\prime} \mathrm{W}$	200
M185_14-7	09.11.2022 19:07	In Situ Camera	$44^{\circ} 22,759^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,292^{\prime} \mathrm{W}$	600
M185_14-8	09.11.2022 20:40	Multinet-Midi	$44^{\circ} 22,553{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,837^{\prime} \mathrm{W}$	600

M185_14-9	09.11.2022 21:46	IKMT-S	44* $22,562^{\prime} \mathrm{N}$	011 ${ }^{\circ} 17,482^{\prime} \mathrm{W}$	200
M185_14-10	09.11.2022 23:25	CTD	$44^{\circ} 22,979^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,970$ W	1000
M185_14-11	10.11.2022 00:35	Multinet-Midi	$44^{\circ} 23,397{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,636^{\prime} \mathrm{W}$	600
M185_14-12	10.11.2022 02:08	IKMT-S	$44^{\circ} 23,959^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,034^{\prime}$ W	200
M185_14-13	10.11.2022 05:47	Marine snow catcher	$44^{\circ} 23,092^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,881^{\prime} \mathrm{W}$	100
M185_14-14	10.11.2022 06:24	Marine snow catcher	$44^{\circ} 23,252^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,789^{\prime} \mathrm{W}$	200
M185_14-15	10.11.2022 07:15	In Situ Camera	$44^{\circ} 23,251^{\prime} \mathrm{N}$	011 ${ }^{\circ} 16,030^{\prime} \mathrm{W}$	600
M185_14-16	10.11.2022 09:01	Multinet-Midi	$44^{\circ} 23,015^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,953^{\prime} \mathrm{W}$	600
M185_14-17	10.11.2022 09:53	Multinet-Midi	$44^{\circ} 23,033^{\prime} \mathrm{N}$	011 ${ }^{\circ} 15,960^{\prime} \mathrm{W}$	600
M185_15-1	10.11.2022 17:09	CTD	$43^{\circ} 47,038^{\prime} \mathrm{N}$	010º 09,101' W	1000
M185_15-2	10.11.2022 18:07	Multinet-Midi	$43^{\circ} 46,995^{\prime} \mathrm{N}$	010º 09,017' W	600
M185_15-3	10.11.2022 19:09	IKMT-S	$43^{\circ} 46,592^{\prime} \mathrm{N}$	010º 08,926' W	200
M185_16-1	11.11.2022 00:17	CTD	$43^{\circ} 26,622^{\prime} \mathrm{N}$	009 ${ }^{\circ}$ 29,878' W	250
M185_16-2	11.11.2022 00:47	Multinet-Midi	$43^{\circ} 26,593^{\prime} \mathrm{N}$	009 ${ }^{\circ}$ 29,706' W	600
M185_16-3	11.11.2022 01:49	IKMT-S	$43^{\circ} 26,526^{\prime} \mathrm{N}$	009² 29,511' W	200
M185_16-4	11.11.2022 03:42	IKMT-L	$43^{\circ} 23,877^{\prime} \mathrm{N}$	009 ${ }^{\circ}$ 29,287' W	300
M185_17-1	11.11.2022 11:05	CTD	$42^{\circ} 22,990^{\prime} \mathrm{N}$	$009^{\circ} 35,978{ }^{\prime} \mathrm{W}$	990
M185_17-2	11.11.2022 12:16	IKMT-S	$42^{\circ} 22,951^{\prime} \mathrm{N}$	$009^{\circ} 35,804^{\prime} \mathrm{W}$	600
M185_18-1	11.11.2022 16:50	CTD	$41^{\circ} 59,037^{\prime} \mathrm{N}$	$009^{\circ} 35,974{ }^{\prime} \mathrm{W}$	650
M185_18-2	11.11.2022 17:30	Multinet-Midi	$41^{\circ} 59,095^{\prime} \mathrm{N}$	$009^{\circ} 35,956{ }^{\prime} \mathrm{W}$	600
M185_18-3	11.11.2022 18:29	IKMT-S	$41^{\circ} 59,169^{\prime} \mathrm{N}$	$009^{\circ} 36,250 ' \mathrm{~W}$	200
M185_19-1	12.11.2022 01:27	CTD	$41^{\circ} 09,005^{\prime} \mathrm{N}$	009 ${ }^{\circ} 26,021^{\prime} \mathrm{W}$	1000
M185_19-2	12.11.2022 02:33	IKMT-S	$41^{\circ} 08,931^{\prime} \mathrm{N}$	009 ${ }^{\circ}$ 25,674' W	200
M185_20-1	12.11.2022 08:19	CTD	$40^{\circ} 29,057^{\prime} \mathrm{N}$	$009^{\circ} 35,939^{\prime} \mathrm{W}$	1000
M185_20-2	12.11.2022 09:31	IKMT-S	$40^{\circ} 29,528^{\prime} \mathrm{N}$	$009^{\circ} 34,828^{\prime} \mathrm{W}$	450
M185_21-1	12.11.2022 14:37	CTD	$39^{\circ} 59,137^{\prime} \mathrm{N}$	$009^{\circ} 36,769^{\prime} \mathrm{W}$	150
M185_21-2	12.11.2022 15:02	Multinet-Midi	$39^{\circ} 59,480^{\prime} \mathrm{N}$	$009^{\circ} 36,516^{\prime} \mathrm{W}$	600
M185_21-3	12.11.2022 15:34	IKMT-S	$39^{\circ} 59,849^{\prime} \mathrm{N}$	$009^{\circ} 36,091^{\prime} \mathrm{W}$	150
M185_22-1	12.11.2022 17:33	CTD	$39^{\circ} 59,028^{\prime} \mathrm{N}$	009 ${ }^{\circ} 46,344^{\prime} \mathrm{W}$	550
M185_22-2	12.11.2022 18:14	Multinet-Midi	$39^{\circ} 59,175^{\prime} \mathrm{N}$	$009^{\circ} 46,375^{\prime} \mathrm{W}$	600
M185_22-3	12.11.2022 19:09	IKMT-S	$39^{\circ} 59,172^{\prime} \mathrm{N}$	009 ${ }^{\circ} 45,455^{\prime} \mathrm{W}$	200
M185_23-1	12.11.2022 22:30	CTD	$39^{\circ} 59,069^{\prime} \mathrm{N}$	010 ${ }^{\circ} 00,027{ }^{\prime} \mathrm{W}$	600
M185_23-2	12.11.2022 23:07	Multinet-Midi	$39^{\circ} 59,167^{\prime} \mathrm{N}$	009º 59,839' W	600
M185_23-3	13.11.2022 00:07	IKMT-S	$39^{\circ} 59,362^{\prime} \mathrm{N}$	$009^{\circ} 59,353^{\prime} \mathrm{W}$	200
M185_24-1	13.11.2022 08:45	Multinet-Midi	$39^{\circ} 59,002^{\prime} \mathrm{N}$	011 ${ }^{\circ}$ 20,036' W	600
M185_24-2	13.11.2022 09:45	IKMT-L	$39^{\circ} 58,634^{\prime} \mathrm{N}$	011 ${ }^{\circ} 18,687^{\prime} \mathrm{W}$	1500
M185_24-3	13.11.2022 17:02	Marine snow catcher	$39^{\circ} 58,997{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,908^{\prime} \mathrm{W}$	90
M185_24-4	13.11.2022 17:29	Marine snow catcher	$39^{\circ} 58,948^{\prime} \mathrm{N}$	011 ${ }^{\circ}$ 20,061' W	120
M185_24-5	13.11.2022 18:04	In Situ Camera	$39^{\circ} 58,966^{\prime} \mathrm{N}$	011 ${ }^{\circ}$ 20,088' W	600
M185_24-6	13.11.2022 20:27	Multinet-Midi	$39^{\circ} 58,982^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,982^{\prime} \mathrm{W}$	600
M185_24-7	13.11.2022 21:32	CTD	$39^{\circ} 59,028^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,983^{\prime} \mathrm{W}$	1000
M185_24-8	13.11.2022 22:58	IKMT-S	$39^{\circ} 59,090^{\prime} \mathrm{N}$	011 ${ }^{\circ}$ 20,119' W	200
M185_24-9	14.11.2022 00:42	Multinet-Midi	$39^{\circ} 58,967{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 20,005^{\prime} \mathrm{W}$	600

M185_24-10	14.11.2022 01:39	IKMT-S	39 $59,169^{\prime} \mathrm{N}$	011 ${ }^{\circ}$ 20,171' W	200
M185_24-11	14.11.2022 05:42	Marine snow catcher	$39^{\circ} 58,926^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,884^{\prime}$ W	90
M185_24-12	14.11.2022 06:07	Marine snow catcher	$39^{\circ} 59,005^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,640^{\prime} \mathrm{W}$	190
M185_24-13	14.11.2022 06:45	In Situ Camera	$39^{\circ} 59,111^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,377^{\prime} \mathrm{W}$	600
M185_24-14	14.11.2022 08:59	Multinet-Midi	$39^{\circ} 59,081{ }^{\prime} \mathrm{N}$	011 ${ }^{\circ} 19,984^{\prime} \mathrm{W}$	600
M185_24-15	14.11.2022 10:01	IKMT-S	$39^{\circ} 59,013 ' \mathrm{~N}$	011 ${ }^{\circ} 19,718^{\prime} \mathrm{W}$	200
M185_24-16	14.11.2022 11:48	Multinet-Midi	$39^{\circ} 59,060 ' \mathrm{~N}$	011 ${ }^{\circ} 19,982^{\prime} \mathrm{W}$	600
M185_24-17	14.11.2022 12:57	IKMT-S	$39^{\circ} 59,283 ' \mathrm{~N}$	011 ${ }^{\circ} 19,712^{\prime} \mathrm{W}$	200
M185_24-18	14.11.2022 14:34	CTD	$39^{\circ} 59,161 ' \mathrm{~N}$	011 ${ }^{\circ} 19,748^{\prime} \mathrm{W}$	1000
M185_25-1	15.11.2022 01:54	CTD	$39^{\circ} 22,861{ }^{\prime} \mathrm{N}$	010013,609' W	300
M185_25-2	15.11.2022 02:35	IKMT-S	$39^{\circ} 21,896^{\prime} \mathrm{N}$	010 ${ }^{\circ} 12,645^{\prime} \mathrm{W}$	200
M185_26-1	15.11.2022 16:54	CTD	$38^{\circ} 29,331{ }^{\prime} \mathrm{N}$	$009^{\circ} 38,788^{\prime} \mathrm{W}$	1000
M185_26-2	15.11.2022 17:53	Multinet-Midi	$38^{\circ} 29,248^{\prime} \mathrm{N}$	$009^{\circ} 38,723^{\prime} \mathrm{W}$	600
M185_26-3	15.11.2022 18:55	IKMT-S	$38^{\circ} 29,217^{\prime} \mathrm{N}$	$009^{\circ} 39,114^{\prime} \mathrm{W}$	200
M185_27-1	15.11.2022 22:43	IKMT-S	$38^{\circ} 14,324^{\prime} \mathrm{N}$	009 ${ }^{\circ} 36,385^{\prime} \mathrm{W}$	200
M185_28-1	16.11.2022 02:45	CTD	$37^{\circ} 55,049 ' \mathrm{~N}$	$009^{\circ} 41,825^{\prime} \mathrm{W}$	1000
M185_28-2	16.11.2022 03:53	IKMT-S	$37^{\circ} 55,242^{\prime} \mathrm{N}$	009 ${ }^{\circ} 41,380{ }^{\prime} \mathrm{W}$	200
M185_29-1	16.11.2022 08:10	CTD	$37^{\circ} 28,985^{\prime} \mathrm{N}$	009 ${ }^{\circ}$ 35,958' W	620
M185_29-2	16.11.2022 09:10	IKMT-S	$37^{\circ} 29,128^{\prime} \mathrm{N}$	$009^{\circ} 35,475^{\prime} \mathrm{W}$	600
M185_30-1	16.11.2022 15:20	CTD	$36^{\circ} 59,848^{\prime} \mathrm{N}$	$009^{\circ} 51,493 ' \mathrm{~W}$	1000
M185_30-2	16.11.2022 16:22	Multinet-Midi	$37^{\circ} 00,098^{\prime} \mathrm{N}$	009 ${ }^{\circ} 49,884^{\prime} \mathrm{W}$	600
M185_30-3	16.11.2022 17:25	IKMT-S	$37^{\circ} 00,003^{\prime} \mathrm{N}$	$009^{\circ} 47,613^{\prime} \mathrm{W}$	200
M185_31-1	16.11.2022 22:09	CTD	$36^{\circ} 28,430^{\prime} \mathrm{N}$	009 ${ }^{\circ} 37,643^{\prime} \mathrm{W}$	1000
M185_31-2	16.11.2022 23:07	IKMT-S	$36^{\circ} 28,019^{\prime} \mathrm{N}$	$009^{\circ} 36,114^{\prime} \mathrm{W}$	200
M185_31-3	17.11.2022 01:00	IKMT-L	$36^{\circ} 24,981{ }^{\prime} \mathrm{N}$	009 ${ }^{\circ}$ 31,104' W	1000
M185_32-1	17.11.2022 08:43	CTD	$36^{\circ} 29,921{ }^{\prime} \mathrm{N}$	$008^{\circ} 37,448^{\prime} \mathrm{W}$	630
M185_32-2	17.11.2022 09:30	IKMT-S	$36^{\circ} 29,787^{\prime} \mathrm{N}$	$008^{\circ} 36,228^{\prime} \mathrm{W}$	600
M185_33-1	17.11.2022 15:35	CTD	$36^{\circ} 20,349^{\prime} \mathrm{N}$	007º 46,903' W	650
M185_33-3	17.11.2022 19:00	IKMT-S	$36^{\circ} 20,288^{\prime} \mathrm{N}$	007º 47,264' W	200
M185_34-1	18.11.2022 01:24	CTD	$36^{\circ} 06,974{ }^{\prime} \mathrm{N}$	$006^{\circ} 55,016^{\prime} \mathrm{W}$	650
M185_34-2	18.11.2022 02:05	Multinet-Midi	$36^{\circ} 06,996{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 54,996{ }^{\prime} \mathrm{W}$	600
M185_34-3	18.11.2022 03:00	IKMT-S	$36^{\circ} 07,069^{\prime} \mathrm{N}$	$006^{\circ} 55,227^{\prime} \mathrm{W}$	200
M185_35-1	18.11.2022 07:49	CTD	$35^{\circ} 36,934{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ}$ 54,986' W	820
M185_35-2	18.11.2022 08:36	Multinet-Midi	$35^{\circ} 36,598^{\prime} \mathrm{N}$	006º 55,208' W	600
M185_35-3	18.11.2022 09:14	IKMT-S	$35^{\circ} 36,315^{\prime} \mathrm{N}$	006º 56,069' W	600
M185_35-4	18.11.2022 11:30	Multinet-Midi	$35^{\circ} 37,924{ }^{\prime} \mathrm{N}$	007º 03,050' W	600
M185_36-1	18.11.2022 16:20	CTD	$35^{\circ} 06,917{ }^{\prime} \mathrm{N}$	007º 04,215' W	600
M185_36-2	18.11.2022 17:01	Multinet-Midi	$35^{\circ} 06,905^{\prime} \mathrm{N}$	007 ${ }^{\circ} 04,403^{\prime} \mathrm{W}$	600
M185_36-3	18.11.2022 18:01	IKMT-S	$35^{\circ} 07,235^{\prime} \mathrm{N}$	007 ${ }^{\circ} 05,020^{\prime} \mathrm{W}$	200
M185_37-1	18.11.2022 23:55	CTD	$34^{\circ} 28,997{ }^{\prime} \mathrm{N}$	007º 03,983' W	980
M185_37-2	19.11.2022 00:52	IKMT-S	$34^{\circ} 29,186^{\prime} \mathrm{N}$	$007{ }^{\circ} 04,206^{\prime} \mathrm{W}$	200
M185_37-3	19.11.2022 02:24	IKMT-L	$34^{\circ} 31,795^{\prime} \mathrm{N}$	007 ${ }^{\circ} 06,625^{\prime} \mathrm{W}$	1000
M185_38-1	19.11.2022 08:00	CTD	$34^{\circ} 52,726^{\prime} \mathrm{N}$	$006^{\circ} 54,907^{\prime} \mathrm{W}$	500

M185_38-2	19.11.2022 08:42	IKMT-S	$34^{\circ} 52,375^{\prime} \mathrm{N}$	006 ${ }^{\circ} 55,448^{\prime} \mathrm{W}$	560
M185_39-1	19.11.2022 15:47	CTD	$35^{\circ} 36,757{ }^{\prime} \mathrm{N}$	006 ${ }^{\circ} 37,263{ }^{\prime} \mathrm{W}$	500
M185_39-2	19.11.2022 16:33	IKMT-S	$35^{\circ} 37,498^{\prime} \mathrm{N}$	006 ${ }^{\circ} 37,849$ ' W	550
M185_40-1	19.11.2022 20:33	CTD	$35^{\circ} 54,985^{\prime} \mathrm{N}$	006 ${ }^{\circ} 27,968^{\prime} \mathrm{W}$	370
M185_40-2	19.11.2022 21:02	IKMT-S	$35^{\circ} 55,069^{\prime} \mathrm{N}$	$006^{\circ} 28,181{ }^{\prime} \mathrm{W}$	200
M185_40-3	19.11.2022 23:01	IKMT-L	$35^{\circ} 55,019^{\prime} \mathrm{N}$	006 ${ }^{\circ} 28,092^{\prime} \mathrm{W}$	400
M185_41-1	20.11.2022 06:57	CTD	$35^{\circ} 56,027{ }^{\prime} \mathrm{N}$	$005^{\circ} 37,245^{\prime} \mathrm{W}$	600
M185_41-2	20.11.2022 07:49	Multinet-Midi	$35^{\circ} 56,076{ }^{\prime} \mathrm{N}$	$005^{\circ} 37,252^{\prime} \mathrm{W}$	600
M185_41-3	20.11.2022 08:42	IKMT-S	$35^{\circ} 56,119^{\prime} \mathrm{N}$	$005^{\circ} 36,790 ' \mathrm{~W}$	200
M185_41-4	20.11.2022 10:09	IKMT-L	$35^{\circ} 56,161^{\prime} \mathrm{N}$	$005^{\circ} 36,978{ }^{\prime} \mathrm{W}$	600
M185_41-5	20.11.2022 13:18	In Situ Camera	$35^{\circ} 56,098^{\prime} \mathrm{N}$	$005^{\circ} 37,018{ }^{\prime} \mathrm{W}$	100
M185_41-6	20.11.2022 13:55	IKMT-L	$35^{\circ} 56,115^{\prime} \mathrm{N}$	$005^{\circ} 36,970$ W	600
M185_41-7	20.11.2022 16:19	IKMT-S	$35^{\circ} 56,219^{\prime} \mathrm{N}$	$005^{\circ} 36,808^{\prime} \mathrm{W}$	200
M185_41-8	20.11.2022 19:05	IKMT-S	$35^{\circ} 56,156^{\prime} \mathrm{N}$	$005^{\circ} 37,154 ' \mathrm{~W}$	200
M185_41-9	20.11.2022 21:12	IKMT-S	$35^{\circ} 56,150{ }^{\prime} \mathrm{N}$	$005^{\circ} 37,350 ' \mathrm{~W}$	100
M185_41-10	21.11.2022 00:03	CTD	$35^{\circ} 56,132 ' \mathrm{~N}$	$005^{\circ} 36,774{ }^{\prime} \mathrm{W}$	600
M185_41-11	21.11.2022 01:00	IKMT-S	$35^{\circ} 56,092 ' \mathrm{~N}$	$005^{\circ} 36,758^{\prime} \mathrm{W}$	100
M185_41-12	21.11.2022 02:41	IKMT-S	$35^{\circ} 56,107{ }^{\prime} \mathrm{N}$	$005^{\circ} 36,737{ }^{\prime} \mathrm{W}$	100
M185_41-13	21.11.2022 06:00	CTD	$35^{\circ} 56,134{ }^{\prime} \mathrm{N}$	$005^{\circ} 36,893 ' \mathrm{~W}$	600
M185_41-14	21.11.2022 07:02	IKMT-S	$35^{\circ} 56,090^{\prime} \mathrm{N}$	$005^{\circ} 36,971{ }^{\prime} \mathrm{W}$	100
M185_42-1	21.11.2022 13:15	CTD	$35^{\circ} 51,029^{\prime} \mathrm{N}$	004 ${ }^{\circ} 48,205^{\prime} \mathrm{W}$	650
M185_42-2	21.11.2022 13:54	IKMT-S	$35^{\circ} 51,068^{\prime} \mathrm{N}$	$004^{\circ} 48,187{ }^{\prime} \mathrm{W}$	600
M185_42-3	21.11.2022 15:54	IKMT-L	$35^{\circ} 52,672{ }^{\prime} \mathrm{N}$	004 ${ }^{\circ} 46,639 ' \mathrm{~W}$	800
M185_43-1	21.11.2022 21:28	CTD	$35^{\circ} 41,407{ }^{\prime} \mathrm{N}$	$004^{\circ} 24,887^{\prime} \mathrm{W}$	1000
M185_43-2	21.11.2022 22:21	IKMT-L	$35^{\circ} 41,746^{\prime} \mathrm{N}$	004 ${ }^{\circ} 24,967^{\prime} \mathrm{W}$	1000
M185_43-3	22.11.2022 01:07	IKMT-S	$35^{\circ} 43,953 ' \mathrm{~N}$	004 ${ }^{\circ} 30,768^{\prime} \mathrm{W}$	200
M185_44-1	22.11.2022 07:09	CTD	$35^{\circ} 32,879^{\prime} \mathrm{N}$	003 ${ }^{\circ} 57,991{ }^{\prime} \mathrm{W}$	430
M185_44-2	22.11.2022 07:42	IKMT-S	$35^{\circ} 32,283 ' N$	$003^{\circ} 58,376{ }^{\prime} \mathrm{W}$	470
M185_44-3	22.11.2022 09:01	IKMT-L	$35^{\circ} 33,382^{\prime} \mathrm{N}$	004 ${ }^{\circ} 00,339^{\prime} \mathrm{W}$	660
M185_45-1	22.11.2022 15:54	CTD	$35^{\circ} 38,652^{\prime} \mathrm{N}$	003 ${ }^{\circ} 06,852^{\prime} \mathrm{W}$	650
M185_45-2	22.11.2022 16:33	Multinet-Midi	$35^{\circ} 38,469^{\prime} \mathrm{N}$	003 ${ }^{\circ} 06,856^{\prime} \mathrm{W}$	600
M185_45-3	22.11.2022 17:25	IKMT-S	$35^{\circ} 38,232 ' \mathrm{~N}$	003 ${ }^{\circ} 07,030{ }^{\prime} \mathrm{W}$	200
M185_46-1	22.11.2022 20:05	CTD	$35^{\circ} 33,685^{\prime} \mathrm{N}$	$002{ }^{\circ} 57,125^{\prime} \mathrm{W}$	250
M185_46-2	22.11.2022 20:29	IKMT-S	$35^{\circ} 33,786^{\prime} \mathrm{N}$	002 ${ }^{\circ} 57,319 ' \mathrm{~W}$	200
M185_47-1	23.11.2022 00:20	CTD	$35^{\circ} 27,727^{\prime} \mathrm{N}$	$002^{\circ} 47,040$ W	150
M185_47-2	23.11.2022 00:43	IKMT-S	$35^{\circ} 28,120^{\prime} \mathrm{N}$	$002^{\circ} 47,199 ' \mathrm{~W}$	100
M185_48-1	23.11.2022 13:46	CTD	$35^{\circ} 55,007{ }^{\prime} \mathrm{N}$	$002{ }^{\circ} 31,935^{\prime} \mathrm{W}$	920
M185_48-2	23.11.2022 14:41	Multinet-Midi	$35^{\circ} 54,815^{\prime} \mathrm{N}$	$002{ }^{\circ} 31,852^{\prime} \mathrm{W}$	600
M185_48-3	23.11.2022 17:07	IKMT-L	$35^{\circ} 54,836{ }^{\prime} \mathrm{N}$	$002^{\circ} 30,353^{\prime} \mathrm{W}$	800
M185_48-4	23.11.2022 19:33	IKMT-S	$35^{\circ} 54,826^{\prime} \mathrm{N}$	$002{ }^{\circ} 36,052^{\prime} \mathrm{W}$	200
M185_49-1	24.11.2022 02:02	CTD	$35^{\circ} 54,910^{\prime} \mathrm{N}$	$003^{\circ} 40,639 ' \mathrm{~W}$	1000
M185_49-2	24.11.2022 03:00	IKMT-S	$35^{\circ} 54,232{ }^{\prime} \mathrm{N}$	$003^{\circ} 40,987^{\prime} \mathrm{W}$	200
M185_49-3	24.11.2022 04:13	IKMT-L	$35^{\circ} 54,130^{\prime} \mathrm{N}$	$003^{\circ} 42,618^{\prime} \mathrm{W}$	700

