Dr. Frank Nitsche Universität zu Köln Institute of Zoology General Ecology Zülpicher Str. 47b 50674 Köln, Germany

Tel.: +49-221-470 3143 email: fnitsche@uni-koeln.de

Short Cruise Report RV MARIA S. MERIAN – Cruise MSM114/2

Mindelo – Punta Arenas 23.01.2023 –22.02.2023 Chief Scientist: Dr. Frank Nitsche Captain: Ralf Schmidt

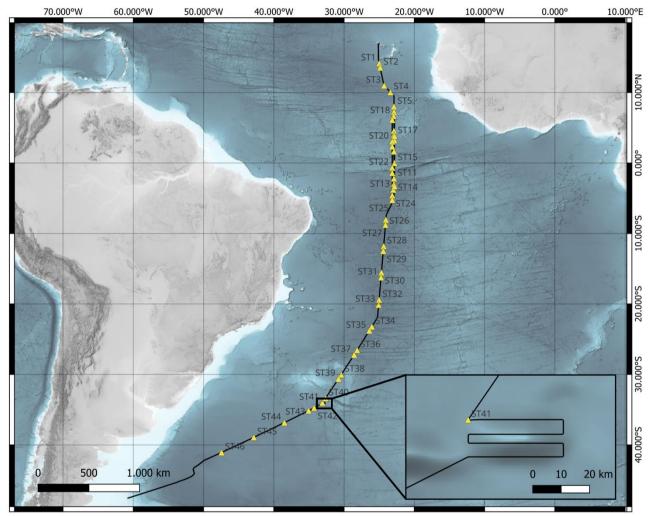


Fig 1: Track chart of Cruise MSM114-2, (Mindelo – Punta Arenas), triangles represent stations.

Objectives

The MSM114/2 cruise served three major goals. As the topic "Atlantic References and Convection" (ARC) already suggests, the main activities centered around (1) to collection of atmospheric and oceanic references across the Atlantic, (2) the investigation of tropical convection near the equator and (3) the protist diversity along this transect

The ship's regular underway measurements of wind speed and direction, humidity, temperature, pressure and radiative fluxes were enhanced by additional instruments. On the atmospheric side, these were (1) a microwave radiometer (to capture vertically the integrated condensed water and water vapor), (2) a ceilometer (to capture cloud-base altitude and aerosol vertical distributions in the lower atmosphere), (3) a cloud camera (for regular images of the sky and cloud base altitude distributions), (4) several sunphotometers and (5) an in-situ size-stratified particle samples (to capture the properties of atmospheric aerosol). On the oceanic side an extra effort involved the analysis oy automatically recorded bathymetry data for a subsequent delivery into the SEABED 2030 database. This analysis also included the detailed investigation of a volcanic seamount in the southern Atlantic.

With a side focus on air-sea interactions, these underway measurements were interrupted twice daily (usually at 9am and 2pm) to simultaneously sample profiles of the upper ocean and the lower atmosphere. During more than 40 station stops, CTD casts down to 500m explored upper ocean properties and protist diversity, and more than 110 drone flights up to 500m in altitude with different instrumentations (i.e. to address particle size or atmospheric state) sampled the upper atmosphere.

The CTD casts automatically provided water samples from different depths which were analyzed to inform on the biodiversity and biogeography of protists (single celled organisms). Despite the importance of protists in the microbial food web, little is known about the biodiversity and biogeography of protists, single celled eukaryotes. Applying high-throughput sequencing, we want to answer the question, if certain species, found only in surface waters of the South Atlantic during one of the last cruises, are also present in the North Atlantic or if the equatorial counter current is forming a physical barrier. The South Atlantic is still an understudied region regarding protist diversity. The aim of this project is to enhance the dataset for protist from understudied areas and to contribute to

The meteorological program during MSM114-2 focused on the thermodynamic and dynamic state of the Atlantic Intertropical Convergence Zone (ITCZ) in boreal winter. The measurement program complements measurements of the boreal summer Atlantic ITCZ taken during SO284. The key guestion addressed is how convective scale processes in the atmosphere, and their coupling to the ocean, shape the large-scale structure of the ITCZ and the regions of low wind speed therein. To this end, the ITCZ was crossed three times along 23°W longitude. During these crossings the ITCZ was sampled using continuous underway measurements and regular radiosonde launches. The underway measurements were used to obtain detailed measurements at the surface of key atmospheric parameters such as wind speed and direction, humidity, temperature, pressure as well as vertically integrated quantities of condensed water and water vapor. All underway measurements ran from the time we left the Cape Verde Islands EEZ until we re-entered the Argentine EEZ. In addition to the underway measurements, 92 radiosondes were launched to obtain vertical profiles extending from the surface to the lower stratosphere with high vertical resolution. Radiosonde launches were mostly limited to the deep tropics and were conducted at a frequency of about every 3 hours.

Narrative

As scientists and crew were already complete, the MSM114/2 research cruise on

Atmospheric References and Convection (ARC) left Mindelo already during the early afternoon of Jan 23. The extra half day helped to recover a small fraction of station time lost to the imposed maximum speed of 10kn. About three hours after leaving the harbor all instruments could be turned on for continued sampling (until Argentine waters were reached after mid-Feb). The entire cruise was regularly interrupted by brief (45min) station stops, each day at 9am and 2pm. During these stops, in parallel, profiles were sampled for upper ocean (down to 500m with a CTD) and lower atmospheric (with small sensors on several drone flights up to 500m in altitude). In total, more than 50 upper ocean and more than 120 lower atmosphere profiles were collected, covering different climate zones between 16N and 45S. In conjunction with the regular upper profiling, including two deep profiles at the equator and near 30S, water collected at different ocean depth were filtered and analyzed for simple life forms (protist colonies). With a special focus on tropical convection the Inter-Tropical Convection Zone (ITCZ) was crossed three times near 23W. At this longitude during late January the ITCZ was found between 6.7N and 4.8S in latitude. The first (a N \rightarrow S) leg lasted from Jan 26, 19UTC to Jan 30, 01UTC, the second (a S \rightarrow N) leg from Jan 30, 02UTC to Feb2, 09UTC and the third (a N \rightarrow S) leg from Feb 2, 10UTC to Feb 5, 11UTC. Over these 10 days every three hours a radiosonde was released to yield atmospheric profiles on more than 80 ascents and 80 descents. Wind profiles of from some of these and extra radiosondes, in addition, helped to validate wind data interpretations by a space-based doppler-lidar (of AEOLUS). Along the transect at selected station, CTD water samples from different depths focusing on the surface, DCM and 500m were collected for DNA analysis of protistan community and cultivation. Water samples were concentrated based on size fractions of 10, 5 and 1µm filters and DNA was extracted direct on board for further processing in the home lab. One aim was to find the equatorial counter current (ECC), which is thought to act as a natural barrier for the distribution of protists in surface water, which was successfully reached by the use of ADCP data. Bathymetrical analyses along the entire route culminated in shape and altitude characterizations of seamounts close to 34S/33W. The observations stopped when national water of Argentina was reached and MSM114/2 arrived in Punta Arenas in the morning of Feb 22.

Acknowledgements

The scientific party of RV MARIA S. MERIAN Cruise MSM114-2 gratefully acknowledges the very friendly and most effective cooperation with Captain Schmidt and his crew. Their great flexibility and their perfect technical assistance substantially contributed to make this cruise a scientific success. We also appreciate the valuable support by the Leitstelle Deutsche Forschungsschiffe (German Research Fleet Coordination Centre) at the University of Hamburg.

List of Participants

Name	Discipline	Institution
Frank Nitsche, PhD	Chief Scientist / Biology	UoC
Wagenhofer, Julian, M.Sc	Biology (protistology)	UoC
Daria Paul, M.Sc	Atmosphere (rem.sensing)	UoC
Lennéa Hayo, B. Sc.	Atmosphere (rem.sensing)	UoC

Julia Windmiller, PhD	Atmosphere (rem.sensing)	MPI-M
Laura Köhler, PhD	Atmosphere (rem.sensing)	MPI-M
Stefan Kinne, PhD	Atmosphere (rem.sensing)	MPI.M
Mechtild Attias-Kinne	Atmsophere (rem.sensing)	MPI-M
Piet Stammes, PhD	Atmosphere (rem.sensing)	KNMI
Olaf Tuinder, PhD	Atmsophere (rem.sensing)	KNMI
Beata Latos M. Sc.	Oceanograghy (air/sea)	IG-PAS
Daniel Kepski, PhD	Oceanography (air/sea)	IG-PAS
Michal Brennek M. Sc.	Oceanography (air/sea)	IG-PAS
Bertrand Lobo M.Sc.	Oceanography (GIS)	HCU
Timo Nischik B. Sc.	Oceanography (GIS)	HCU
	• 、 /	

UoC	University of Cologne, Inst. of Zoology, Dep of General Ecology, Cologne
KNMI	Koninklijk Nederlands Meteorologisch Instituut, De Bilt
MPI-M	Max-Planck-Institut für Meteorologie, Hamburg
HCU	Hafen City Universität, Hamburg
IG-PAS	Institute of Geophysics Polish Academy of Sciences, Warsaw

Stationlist

Station	Device	Time	Action	Latitude	Longitude	Depth	Rope
MSM114/2_1-1	CTD	24.01.2023 10:14	max depth/on ground	14° 08,461' N	024° 59,840' W	4436	500
MSM114/2_1-2	UAV	24.01.2023 10:07	UAV (drone) started	14° 08,461' N	024° 59,840' W	4435	
MSM114/2_2-1	UAV	24.01.2023 15:23	UAV (drone) started	13° 32,380' N	024° 51,904' W	4571	
MSM114/2_2-2	CTD	24.01.2023 15:30	max depth/on ground	13° 32,380' N	024° 51,903' W	4571	500
MSM114/2_3-1	CTD	25.01.2023 09:26	max depth/on ground	10° 59,064' N	024° 17,872' W	5291	500
MSM114/2_3-2	UAV	25.01.2023 09:42	UAV (drone) started	10° 59,064' N	024° 17,872' W	5293	
MSM114/2_3-3	UAV	25.01.2023 09:28	UAV (drone) started	10° 59,064' N	024° 17,872' W	5293	
MSM114/2_4-1	UAV	25.01.2023 17:31	UAV (drone) started	10° 02,764' N	023° 24,243' W	5333	
MSM114/2_4-2	CTD	25.01.2023 17:44	max depth/on ground	10° 02,764' N	023° 24,242' W	5335	500
MSM114/2_4-3	UAV	25.01.2023 17:37	UAV (drone) started	10° 02,764' N	023° 24,242' W	5336	
MSM114/2_5-1	CTD	26.01.2023 09:15	max depth/on ground	07° 59,939' N	022° 54,367' W	4369	500
MSM114/2_5-2	UAV	26.01.2023 09:25	UAV (drone) started	07° 59,939' N	022° 54,367' W	4366	
MSM114/2_5-3	UAV	26.01.2023 09:35	UAV (drone) started	07° 59,939' N	022° 54,367' W	4371	
MSM114/2_6-1	UAV	26.01.2023 14:52	UAV (drone) started	07° 15,463' N	022° 54,235' W	4131	
MSM114/2_6-2	CTD	26.01.2023 15:06	max depth/on ground	07° 15,462' N	022° 54,235' W	4131	500
MSM114/2_6-3	UAV	26.01.2023 15:02	UAV (drone) started	07° 15,462' N	022° 54,235' W	4131	
MSM114/2_6-4	UAV	26.01.2023 15:20	UAV (drone) started	07° 15,463' N	022° 54,235' W	4135	
MSM114/2_6-5	UAV	26.01.2023 15:28	UAV (drone) started	07° 15,463' N	022° 54,235' W	4131	
MSM114/2_7-1	CTD	27.01.2023 10:15	max depth/on ground	04° 33,032' N	022° 54,399' W	4089	50
MSM114/2_7-2	UAV	27.01.2023 10:24	UAV (drone) started	04° 33,032' N	022° 54,400' W	4092	
MSM114/2_7-3	UAV	27.01.2023 10:37	UAV (drone) started	04° 33,032' N	022° 54,399' W	4093	
MSM114/2_8-1	UAV	27.01.2023 15:48	UAV (drone) started	04° 01,858' N	022° 58,699' W	4215	
MSM114/2_8-2	UAV	27.01.2023 15:03	UAV (drone) started	04° 01,851' N	022° 58,681' W	4216	
MSM114/2_9-1	CTD	27.01.2023 17:06	max depth/on ground	03° 59,995' N	022° 54,412' W	4202	500
MSM114/2_9-2	UAV	27.01.2023 16:55	UAV (drone) started	03° 59,995' N	022° 54,411' W	4202	
MSM114/2_9-3	UAV	27.01.2023 16:58	UAV (drone) started	03° 59,995' N	022° 54,412' W	4204	
MSM114/2_10-1	CTD	28.01.2023 10:13	max depth/on ground	01° 38,094' N	022° 54,150' W	4247	500
MSM114/2_11-1	CTD	29.01.2023 10:16	max depth/on ground	02° 12,352' S	022° 53,718' W	4711	
MSM114/2_11-2	UAV	29.01.2023 10:03	UAV (drone) started	02° 12,352' S	022° 53,718' W	4687	
MSM114/2_11-3	UAV	29.01.2023 10:10	UAV (drone) started	02° 12,352' S	022° 53,718' W	4730	
MSM114/2_12-1	UAV	29.01.2023 15:43	UAV (drone) started	02° 58,382' S	022° 53,631' W	5542	
MSM114/2_12-2	CTD	29.01.2023 15:36	max depth/on ground	02° 58,382' S	022° 53,630' W	5547	500
MSM114/2_13-1	CTD	30.01.2023 10:18	max depth/on ground	03° 48,039' S	022° 59,976' W	5255	500
MSM114/2_13-2	UAV	30.01.2023 10:10	UAV (drone) started	03° 48,040' S	022° 59,975' W	6362	
MSM114/2_14-1	CTD	30.01.2023 15:14	max depth/on ground	03° 17,983' S	022° 49,564' W	4920	500
MSM114/2_14-2	UAV	30.01.2023 15:03	UAV (drone) started	03° 17,984' S	022° 49,565' W	4919	
MSM114/2_14-3	UAV	30.01.2023 15:12	UAV (drone) started	03° 17,984' S	022° 49,565' W	4915	
MSM114/2_14-4	UAV	30.01.2023 15:21	UAV (drone) started	03° 17,984' S	022° 49,564' W	4923	
MSM114/2_14-5	UAV	30.01.2023 15:35	UAV (drone) started	03° 17,984' S	022° 49,565' W	4921	
MSM114/2_15-1	CTD	31.01.2023 13:47	max depth/on ground	00° 00,001' S	022° 49,700' W	3699	360
MSM114/2_15-2	UAV	31.01.2023 13:16	UAV (drone) started	00° 00,001' S	022° 49,700' W	3698	
MSM114/2_15-3	UAV	31.01.2023 13:45	UAV (drone) started	00° 00,002' S	022° 49,700' W	3699	
MSM114/2_16-1	UAV	01.02.2023 10:50	UAV (drone) started	03° 12,773' N	022° 49,691' W	4497	

MSM114/2_16-2	CTD	01.02.2023 10:36	max depth/on ground	03° 12,774' N	022° 49,692' W	4498	500
MSM114/2_16-4	UAV	01.02.2023 10:30	UAV (drone) started	03° 12,773' N	022° 49,692' W	4498	
MSM114/2_17-1	CTD	01.02.2023 15:15	max depth/on ground	03° 49,806' N	022° 49,692' W	4042	500
MSM114/2_17-2	UAV	01.02.2023 15:03	UAV (drone) started	03° 49,806' N	022° 49,692' W	4040	
MSM114/2_17-3	UAV	01.02.2023 15:23	UAV (drone) started	03° 49,805' N	022° 49,692' W	4040	
MSM114/2_18-1	CTD	02.02.2023 10:14	max depth/on ground	06° 39,202' N	022° 58,410' W	3579	500
MSM114/2_18-2	UAV	02.02.2023 10:00	UAV (drone) started	06° 39,202' N	022° 58,410' W	3578	
MSM114/2_18-3	UAV	02.02.2023 10:09	UAV (drone) started	06° 39,201' N	022° 58,410' W	3575	
MSM114/2_19-1	CTD	02.02.2023 15:13	max depth/on ground	06° 07,040' N	023° 08,870' W	3888	500
MSM114/2_19-2	UAV	02.02.2023 15:04	UAV (drone) started	06° 07,039' N	023° 08,869' W	3890	
MSM114/2_19-3	UAV	02.02.2023 15:21	UAV (drone) started	06° 07,040' N	023° 08,870' W	3888	
MSM114/2_20-1	CTD	03.02.2023 10:16	max depth/on ground	03° 02,154' N	023° 08,982' W	4652	500
MSM114/2_20-2	UAV	03.02.2023 10:02	UAV (drone) started	03° 02,155' N	023° 08,983' W	0	
MSM114/2_20-3	UAV	03.02.2023 10:03	UAV (drone) started	03° 02,154' N	023° 08,983' W	4655	
MSM114/2_20-3	UAV	03.02.2023 10:28	UAV (drone) started	03° 02,155' N	023° 08,982' W	4654	
MSM114/2_21-1	UAV	03.02.2023 14:58	UAV (drone) started	02° 20,642' N	023° 08,871' W	4383	
MSM114/2_21-2	CTD	03.02.2023 15:14	max depth/on ground	02° 20,642' N	023° 08,871' W	4384	500
MSM114/2_21-3	UAV	03.02.2023 15:03	UAV (drone) started	02° 20,643' N	023° 08,871' W	4383	
MSM114/2_22-1	CTD	04.02.2023 10:13	max depth/on ground	00° 40,039' S	023° 09,003' W	3613	500
MSM114/2_22-2	UAV	04.02.2023 10:01	UAV (drone) started	00° 40,039' S	023° 09,003' W	3635	
MSM114/2_22-3	UAV	04.02.2023 10:05	UAV (drone) started	00° 40,039' S	023° 09,003' W	3610	
MSM114/2_23-1	CTD	04.02.2023 15:14	max depth/on ground	01° 24,962' S	023° 08,985' W	5328	500
MSM114/2_23-2	UAV	04.02.2023 15:00	UAV (drone) started	01° 24,961' S	023° 08,985' W	5329	
MSM114/2_23-3	UAV	04.02.2023 15:10	UAV (drone) started	01° 24,961' S	023° 08,985' W	5330	
MSM114/2_24-1	CTD	05.02.2023 10:13	max depth/on ground	04° 36,064' S	023° 08,994' W	5536	500
MSM114/2_24-2	UAV	05.02.2023 10:02	UAV (drone) started	04° 36,064' S	023° 08,993' W	5532	
MSM114/2_25-1	CTD	05.02.2023 15:13	max depth/on ground	05° 15,367' S	023° 08,984' W	5223	500
MSM114/2_25-2	UAV	05.02.2023 14:59	UAV (drone) started	05° 15,367' S	023° 08,984' W	5220	
MSM114/2_26-1	CTD	06.02.2023 10:14	max depth/on ground	08° 03,681' S	024° 03,076' W	5707	500
MSM114/2_26-2	UAV	06.02.2023 10:05	UAV (drone) started	08° 03,681' S	024° 03,076' W	5708	
MSM114/2_27-1	CTD	06.02.2023 15:15	max depth/on ground	08° 46,599' S	024° 06,648' W	5388	500
MSM114/2_27-2	UAV	06.02.2023 15:01	UAV (drone) started	08° 46,599' S	024° 06,648' W	5393	
MSM114/2_27-3	UAV	06.02.2023 15:14	UAV (drone) started	08° 46,599' S	024° 06,648' W	5387	
MSM114/2_28-1	CTD	07.02.2023 10:21	max depth/on ground	11° 49,110' S	024° 22,032' W	5151	500
MSM114/2_28-2	UAV	07.02.2023 10:04	UAV (drone) started	11° 49,110' S	024° 22,032' W	5152	
MSM114/2_29-1	CTD	07.02.2023 15:15	max depth/on ground	12° 29,835' S	024° 25,503' W	5466	500
MSM114/2_29-2	UAV	07.02.2023 15:00	UAV (drone) started	12° 29,835' S	024° 25,503' W	5475	
MSM114/2_29-3	UAV	07.02.2023 15:15	UAV (drone) started	12° 29,835' S	024° 25,503' W	5466	
MSM114/2_30-1	CTD	08.02.2023 10:18	max depth/on ground	15° 33,051' S	024° 41,147' W	5032	500
MSM114/2_31-1	CTD	08.02.2023 15:15	max depth/on ground	16° 14,175' S	024° 44,665' W	4363	500
MSM114/2_32-1	UAV	09.02.2023 10:00	UAV (drone) started	19° 24,946' S	025° 01,287' W	5563	
MSM114/2_32-2	CTD	09.02.2023 10:20	max depth/on ground	19° 24,946' S	025° 01,286' W	5564	500
MSM114/2_32-3	UAV	09.02.2023 10:14	UAV (drone) started	19° 24,946' S	025° 01,286' W	5565	
MSM114/2_33-1	UAV	09.02.2023 14:59	UAV (drone) started	20° 07,037' S	025° 04,957' W	5300	
MSM114/2_33-2	CTD	09.02.2023 15:19	max depth/on ground	20° 07,038' S	025° 04,957' W	5293	500
MSM114/2_33-3	UAV	09.02.2023 15:29	UAV (drone) started	20° 07,038' S	025° 04,957' W	5290	
·*·S·*·±±¬/ 2_33-3		55.02.2023 15.25		20 07,000 0	323 J 7 ,337 VV	5250	

	r						
MSM114/2_34-1	UAV	10.02.2023 10:38	UAV (drone) started	23° 12,787' S	026° 02,828' W	5735	
MSM114/2_34-2	CTD	10.02.2023 10:50	max depth/on ground	23° 12,770' S	026° 02,851' W	5734	500
MSM114/2_34-3	UAV	10.02.2023 10:48	UAV (drone) started	23° 12,770' S	026° 02,851' W	5734	
MSM114/2_35-1	UAV	10.02.2023 14:59	UAV (drone) started	23° 47,312' S	026° 24,242' W	5125	
MSM114/2_35-2	CTD	10.02.2023 15:11	max depth/on ground	23° 47,312' S	026° 24,243' W	5126	500
MSM114/2_35-3	UAV	10.02.2023 15:27	UAV (drone) started	23° 47,312' S	026° 24,242' W	5125	
MSM114/2_36-1	CTD	11.02.2023 10:13	max depth/on ground	26° 33,214' S	028° 08,892' W	5051	500
MSM114/2_36-2	UAV	11.02.2023 10:01	UAV (drone) started	26° 33,214' S	028° 08,893' W	5034	
MSM114/2_36-3	UAV	11.02.2023 10:12	UAV (drone) started	26° 33,214' S	028° 08,892' W	5037	
MSM114/2_37-1	CTD	11.02.2023 15:16	max depth/on ground	27° 12,736' S	028° 34,146' W	4975	500
MSM114/2_37-2	UAV	11.02.2023 15:01	UAV (drone) started	27° 12,736' S	028° 34,144' W	4956	
MSM114/2_38-1	CTD	12.02.2023 11:17	max depth/on ground	30° 01,446' S	030° 23,820' W	3912	500
MSM114/2_38-2	UAV	12.02.2023 11:18	UAV (drone) started	30° 01,446' S	030° 23,820' W	3912	
MSM114/2_39-1	CTD	12.02.2023 16:13	max depth/on ground	30° 37,971' S	030° 47,875' W	4005	500
MSM114/2_39-2	UAV	12.02.2023 16:13	UAV (drone) started	30° 37,970' S	030° 47,875' W	4006	
MSM114/2_40-1	CTD	13.02.2023 11:13	max depth/on ground	33° 21,840' S	032° 38,368' W	3559	500
MSM114/2_41-1	CTD	13.02.2023 17:09	max depth/on ground	34° 01,113' S	033° 05,357' W	4028	3800
MSM114/2_41-2	UAV	13.02.2023 16:40	UAV (drone) started	34° 01,113' S	033° 05,358' W	4034	
MSM114/2_41-3	UAV	13.02.2023 16:53	UAV (drone) started	34° 01,113' S	033° 05,358' W	3930	
MSM114/2_43-1	CTD	14.02.2023 11:13	max depth/on ground	34° 44,620' S	034° 15,048' W	4550	500
MSM114/2_43-2	UAV	14.02.2023 11:01	UAV (drone) started	34° 44,620' S	034° 15,048' W	4560	
MSM114/2_43-3	UAV	14.02.2023 11:14	UAV (drone) started	34° 44,620' S	034° 15,048' W	4562	
MSM114/2_44-1	CTD	14.02.2023 16:12	max depth/on ground	35° 08,648' S	035° 03,190' W	4496	500
MSM114/2_44-2	UAV	14.02.2023 16:00	UAV (drone) started	35° 08,649' S	035° 03,190' W	4502	
MSM114/2_44-3	UAV	14.02.2023 16:15	UAV (drone) started	35° 08,649' S	035° 03,190' W	4502	
MSM114/2_45-1	CTD	15.02.2023 11:16	max depth/on ground	36° 50,371' S	038° 29,822' W	4842	500
MSM114/2_46-1	CTD	16.02.2023 11:14	max depth/on ground	38° 55,988' S	042° 50,810' W	5113	500
MSM114/2_46-2	UAV	16.02.2023 11:05	UAV (drone) started	38° 55,959' S	042° 50,827' W	6913	
MSM114/2_46-3	UAV	16.02.2023 11:17	UAV (drone) started	38° 56,009' S	042° 50,797' W	5115	
MSM114/2_47-1	CTD	17.02.2023 11:13	max depth/on ground	41° 04,228' S	047° 26,574' W	5210	500