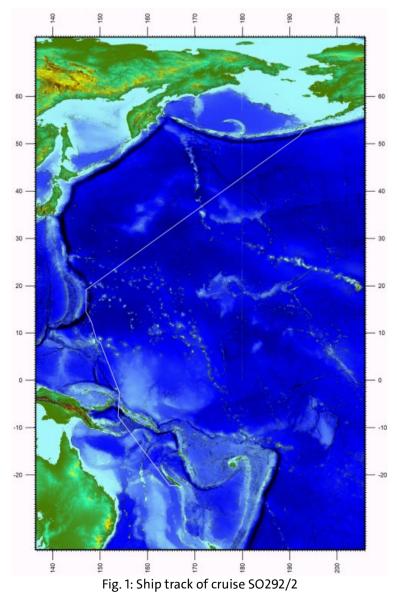
Name:Dr. Walter MenapaceInstitut:MARUM - Center for Marine Environmental Sciences
University of BremenAdresse:Leobener Str. 8, 28359
Bremen, Germany

email wmenapace@marum-alumni.de walter.menapace@uibk.ac.at


Short Cruise Report SONNE SO292/2

Nouméa (New Caledonia) – Dutch Harbor (USA)

24.06.2022 - 21.07.2022

Chief Scientist: Dr. Walter Menapace

Captain: Oliver Meyer

Objectives

The transit expedition SO292/2 was composed by two different projects: the main one with acronym "DeepBlue" and the secondary one with acronym "PORD", each one with diverse but compatible objectives.

Objectives DeepBlue

The main objective of DeepBlue was to investigate geodynamic processes and geochemical cycles in the Mariana Trench forearc, as this is a unique location worldwide for the possibility to study active subduction zone serpentinization through seafloor samples. Mud volcanoes (MVs), cold seep structures which are scattered on the forearc, are known features in the area and they have been proved to have a crucial role in recycling subducted sediments and even exhuming hydrated forearc mantle and subduction channel material to the seafloor. The nature of the emitted MVs sediments (mostly clastrich dark blue serpentinite mud) and fluids (high pH and variable composition with increasing distance from the trench) allows to sample processes happening at depth into the subduction zone, up to ~19 km below seafloor. The samples collected with the RV Sonne on serpentinite MVs at varying distances from the trench will allow to characterize the fluid and solid end members of such extrusive products and shed some light on the serpentinization at depth in the forearc.

Previous expeditions have studied several Marianas MVs, but no sediments, rocks, or pore water samples have ever been recovered from MVs <50 km from the trench axis. The primary objective of SO292/2 was to fill this knowledge gap and thus:

- i) characterize the spatial variability of slab fluids within the forearc environment as a means of tracing dehydration, decarbonization, and water-rock reactions in subduction and suprasubduction zone environments;
- ii) investigate the metamorphic and tectonic evolution of this non-accretionary forearc region;
- iii) explore the relationships between seismicity and seamount subduction vs. MV evolution.

In order to answer these questions, the scientific program included the following approaches: a) sample sediments and rocks from active MVs using gravity coring and dredging; b) acquire hydrographic data (parasound and multibeam) on newly discovered MVs and active fluid emission features; c) obtain photo/video material with the OFOS to investigate macrofauna and ongoing biogeochemical processes on active MVs; d) deploy two p-T observatories to assess episodic emission of sediments and/or fluids (and their implication for the subduction dynamics) on key MVs.

While objectives i) and ii) can be achieved through onshore laboratory analyses of the samples collected during the SO292/2 expedition, objective iii) will only be completed after recovery of the long-term pressure and temperature in-situ observatories deployed on two MVs during a future expedition.

Objectives PORD

The primary goals of the PORD project were to obtain continuous reference data over oceans during the whole SO292/2 transit. The atmospheric data collected (aerosol, clouds and trace-gases) will offer needed references to satellite remote sensing from space. Since relatively sparse data are present over the Pacific, the SO292/2 data will also support global modeling in a wider sense. The simultaneous sampling, also by the vessel's standard meteorological instruments, will be applied (1) to explore accuracy and consistency from redundant data and (2) to establish from associations with observational data possible statistical relationships. In addition, the bathymetry collected during transit will be uploaded to the SEABED 2030 database.

Narrative

All the scientific participants of expedition SO292/2 boarded the ship in the early morning of the 23rd of June, after being tested for COVID infection before their respective flight, on land in Nouméa, and upon setting foot on the ship. The testing continued during the following days, in order to minimize the chances of contagion. The containers for the SO292/2 and the subsequent expedition (SO293) arrived as soon as the ship docked, on the 21st, and were consequently loaded. Due to the deferred arrival of several pieces of luggage from both the scientific and the ship's crew, the departure has been delayed to 22:00 on the 24th.

During the transit to Working Area 1 (WA1) the meteorologists and the hydroacoustics team started collecting data as soon as the Sonne was in open waters, and the measurements stopped at the end of the SO292/2 expedition, just before reaching the arrival harbor in Alaska. The atmospheric data for the PORD project have then been gathered in a seamlessly continuous way during the whole expedition.

This first part of the transit lasted from 25.06 until 02.07, when we entered the Northern Mariana EEZ and started the scientific work of the DeepBlue project. In these first days the scientists, which were mostly new to the ship, had the chance to get acquainted with the life on board and had to participate to the mandatory safety drill simulating an abandon ship situation. Science also kept the SO292/2 participants busy; laboratories were prepared for the first "core on deck", science meetings were held daily in the conference room, and continuous multibeam and parasound profiles were taken during transit, in order to contribute to the DAM Underway Bathymetry project.

On 03.07 we reached the Southern Mariana forearc, the first of our two study areas (WA1). During the night we could extensively map the target MV situated between 6000 and 7000 mbsl. Taking advantage of the beautiful weather and the perfect sea conditions on Monday the 4th we deployed the gravity corer, in order to sample diverse morphological features on the MV. Unfortunately, the coring operations revealed more difficult than expected, with a low core retrieval. Nonetheless, we continued the scientific program with a dredge profile on the same target, which allowed us to collect a suite of different rock clasts from both lower and upper plate. Subsequently, we used the RV Sonne own OFOS (Ocean Seafloor Observation System) to image the MV, getting spectacular footage of a clasts-rich ocean seafloor, mudflow terraces, and brucite chimneys. This not only confirmed the mud volcanic nature of this feature, but also allowed us to select a proper site for the deployment of the long-term pressure and temperature (p-T) observatory we built at MARUM. The NCB Observatory was then safely released on the seafloor (05.07), with the purpose of monitoring the p-T parameters of the MV sediments in the years to come, until its future retrieval.

We then steamed away in the direction of our second working area (WA2), in the Northern Mariana Forearc, which we reached on the 6th of July. Here we focused our research on multiple seafloor structures. Several gravity cores have been done, coring known features (Pacman, Conical and Cerulean Springs), as well as two new structures, which were identified as MVs due to retrieval of blue serpentinite muds and clasts. These sample will be studied in order to determine the geochemical composition of the porewater, as well as the presence of microbial activity, in an effort to shed some light on the origin of the fluids and the life which they could fuel. Finally, we also managed to core a deep-sea basin in the forearc, which recovered the first turbidite record of the Mariana Forearc retrieved after the DSDP Leg 60 in 1982.

Two further OFOS dives were performed at Cerulean Springs (06.07) and Conical (08.07), with the latter returning spectacular images of carbonate chimneys, ferromanganese crusts and deep fractures scattered on the seafloor. Moreover, we deployed the dredge two more times on Pacman (07.07) and

Conical (09.07), getting a discrete amount of samples which will be driving further petrological studies once onshore. The site selected for the deployment of our second observatory was Cerulean Springs, as it has been identified in the past as the one with the highest fluid flow emission of the whole forearc. The second NCB observatory was also flawlessly deployed on the 07th of July, in a location chosen from the seafloor imagery of the OFOS dive.

On the 9th of July we started the transit from WA2, which terminated with our arrival to Unalaska (Aleutian Islands). Meanwhile, the work on the samples collected in the working areas was still going on, with the scientists processing the cores and the dredge hauls material. In order to be able to use the samples in future publications, everything had to be thoroughly catalogued and stored adequately, with the corresponding metadata. We arrived on the 21st of July in Dutch Harbor (Unalaska), and disembarked the Sonne in the following days, since due to bad weather most of the flights to the Alaskan mainland were canceled.

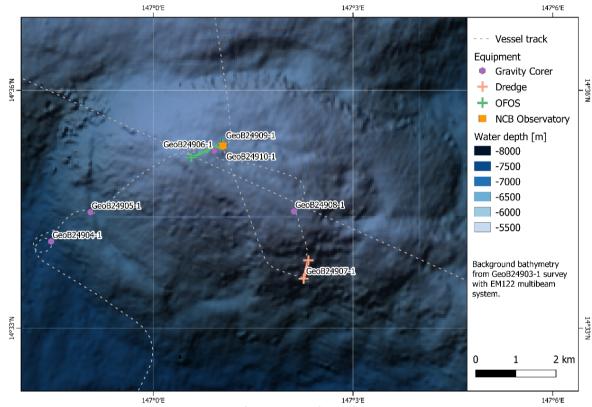


Figure 2: Overview of stations in the Unknown MV#1 in WA1.

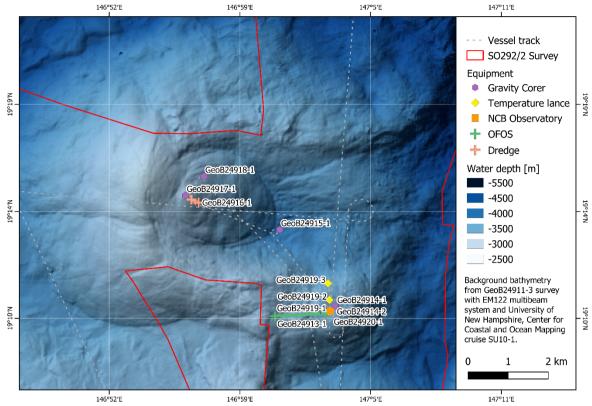


Figure 3: Overview of stations and bathymetric coverage on Pacman MV and Cerulean Springs (in WA2).

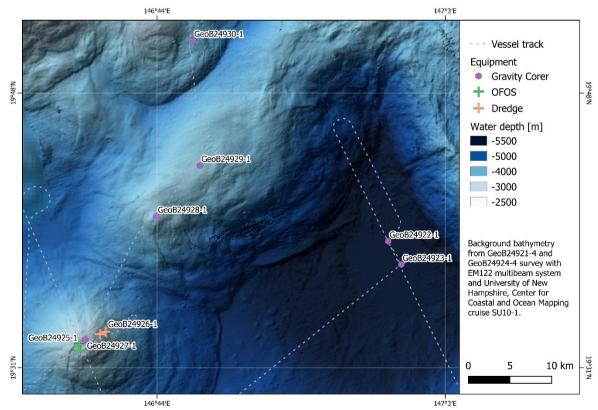


Figure 4: Detailed map of stations on a deep-sea Basin, Conical MV and two newly discovered MVs (Unknown MV#2 and Unknown MV#3 in WA2).

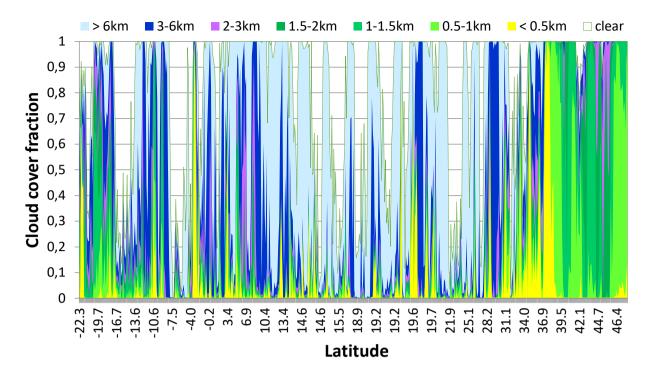


Figure 5: SO292-2 timeseries of hourly averages for cloud-base altitude range fractional coverage. Cloud-free fractions are indicated by absence of color.

Acknowledgements

All participants of Expedition SO292/2 thank in addition to New Caledonia and Micronesia the US Department of State and the US Fish and Wildlife Service in particular for the permission of research in the Northern Marianas EEZ and in the Marianas Trench Marine National Monument area. The captain and crew of R/V SONNE are thanked for their support, which contributed to the success of the expedition. Particular gratitude goes also to the PTJ, the German Research Fleet Coordination Centre (LDF) and the shipping company Briese Research for the tremendous support they have provided.

List of participants

#	Name	Task	Institute
1.	Walter Menapace	Chief Scientist	MARUM / U-IBK
2.	Timo Fleischmann	In-situ Observatories/Coring	MARUM
3.	Sophia Stavrakoudis	In-situ Observatories/Heat Flow	MARUM - HiWi
4.	Stefan Kinne	Atmospheric Measurements	MPI
5.	Steffen Dörner	Atmospheric Measurements	MPI
6.	Bianca Lauster	Atmospheric Measurements	MPI
7.	Cornelia V. Kieckebusch	Atmospheric Measurements	MPI
8.	Amber Henningsen	Hydroacoustics	MARUM - HiWi
9.	Mona Lütjens	Hydroacoustics	HCU
10.	Gavin Dmello	Hydroacoustics	MARUM - HiWi
11.	Meret Felgendreher	Hydroacoustics	MARUM - HiWi
12.	Shuhui Xu	Gas sampling	MARUM
13.	Anna Krug	Biology	MARUM - HiWi
14.	Peter Matzerath	Fluid Geochemistry	MARUM - HiWi
15.	Antonia Witzleb	Fluid Geochemistry	MARUM - HiWi
16.	Pauline Cornard	Sedimentology	U-IBK
17.	Nele Behrendt	Sedimentology	MARUM
18.	Dominik Zawadzki	Sedimentology	U-SZ
19.	Junli Zhang	Cores / samples Curator	MARUM
20.	Yuji Ichiyama	Petrology	CHIBA
21.	Shun Takamizawa	Petrology	CHIBA
22.	Palash Kumawat	Petrology	MARUM - HiWi

MARUM - Zentrum für Marine Umweltwissenschaften: Universität Bremen, Leobener Str. 8, 28359 Bremen, Germany, www.marum.de

University of Innsbruck: Institut für Geologie, Innrain 52f, 6020 Innsbruck, Austria, www.uibk.ac.at/geologie

Max-Planck-Institut für Meteorologie (MPI-M): Atmosphären-Abteilung, Bundesstrasse 53, 20146 Hamburg, Germany, www.mpimet.mpg.de

Max-Planck-Institut für Chemie (MPI-C): Satelliten-Gruppe, Hahn-Meitner-Weg 1, 55128 Mainz, Germany, www.mpic.de

University of Szczecin: Institute of Marine and Environmental Sciences, Mickiewicza 16a, 70-383 Szczecin, Poland

Chiba University: Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, 263-8522 Chiba, Japan

HafenCity University (HCU): Geodäsie und Geoinformatik | Hydrographie, Überseeallee 16, 20457 Hamburg, Germany, www.hcu-hamburg.de

Stations list

GeoB Number: Curation number of the MARUM core repository

Abbreviations: SBE/ParaS/ADCP = Ship-mounted Multibeam/Parasound/ADCP systems; XSV = expendable sound velocimeter; GC = Gravity Corer; DRG = Chain-bag Dredge; OFOS = Ocean Floor Observation System; Observatory = p-T in-situ Observatory; TL = Temperature Lance; CO/CC/Ceilo/MAXDOAS = atmospheric measurements.

NOTE: Date/Time/LAT/LONG/Water Depth are relative to either start of the operation (for SBE/ParaS/ADCP, XSV) or seafloor conditions (GC, DRG, OFOS, Observatory, TL)

GeoB Nr.	Ship Station	Gear Type	Name/Area	LAT		LONG		LONG		ONG Time (UTC)		Date	WD (mbsl)	Recovery (cm)
				0	min	Dir	0	min	Dir					
GeoB24901-1	SO292/2_1	SBE	New Caledonian EEZ To WA1	22	21.354	S	166	5.351	Е	13:13	24.06.2022	1988	/	
GeoB24901-2	SO292/2_1	ADCP	New Caledonian EEZ To WA1	22	21.354	S	166	5.351	Е	13:13	24.06.2022	1988	/	
GeoB24901-3	SO292/2_1	ParaS	New Caledonian EEZ To WA1	22	21.354	S	166	5.351	Е	13:13	24.06.2022	1988	/	
GeoB24901-4	SO292/2_1	XSV	Underway XSV	16	49.262	S	160	53.745	Е	04:35	26.06.2022	4479	/	
GeoB24901-5	SO292/2_1	SBE	New Caledonian EEZ To WA1	4	50.275	S	153	50.540	Е	03:18	29.06.2022		/	
GeoB24901-6	SO292/2_1	BUCKET	New Caledonian EEZ To WA1	1	5.786	S	153	49.764	Е	09:00	30.06.2022		/	
GeoB24902-1	SO292/2_2	XSV	Underway XSV	13	20.165	Ν	147	48.819	Е	06:00	03.07.2022	5170	/	
GeoB24903-1	SO292/2_3	SBE	Mapping Potential MV#1	14	15.426	Ν	147	2.121	Е	12:11	03.07.2022	7465	/	
GeoB24903-2	SO292/2_3	ParaS	Mapping Potential MV#1	14	15.426	Ν	147	2.121	Е	12:11	03.07.2022	7465	/	
GeoB24904-1	SO292/2_4	GC	Potential MV#1 - Background	14	33.805	Ν	146	58.476	Е	22:27	03.07.2022	7085	168	
GeoB24905-1	SO292/2_5	GC	Potential MV#1 - W Flank	14	34.180	Ν	146	59.104	Е	03:16	04.07.2022	6619	0	
GeoB24906-1	SO292/2_6	GC	Potential MV#1 - Summit	14	35.091	Ν	147	0.947	Е	07:21	04.07.2022	5857	0	
GeoB24907-1	SO292/2_7	DRG	Potential MV#1 - S Flank	14	33.249	Ν	147	2.257	Е	12:16	04.07.2022	6464	/	
GeoB24908-1	SO292/2_8	GC	Potential MV#1 - E Flank	14	34.313	Ν	147	2.157	Е	18:17	04.07.2022	5985	0	
GeoB24909-1	SO292/2_9	OFOS	Potential MV#1 - Summit	14	35.215	Ν	147	1.040	Е	00:17	05.07.2022	5969	/	
GeoB24910-1	SO292/2_10	Observatory	NCB Observatory_Potential MV #1	14	35.089	Ν	147	1.036	Е	08:40	05.07.2022	5977	/	
GeoB24911-1	SO292/2_11	SBE	Transit between WA1-WA2	14	35.770	Ν	147	1.110	Е	10:45	05.07.2022	5965	/	

GeoB24911-2	SO292/2_11	ParaS	Transit between WA1-WA2	14	35.770	Ν	147	1.110	Е	10:45	05.07.2022	5965	/
GeoB24911-3	SO292/2_11	SBE	Transit between WA1-WA2	18	57.003	Ν	146	56.998	Е	10:45	06.07.2022	3150	/
GeoB24911-4	SO292/2_11	ParaS	Transit between WA1-WA2	18	57.003	Ν	146	56.998	Е	10:45	06.07.2022	3150	/
GeoB24912-1	SO292/2_12	XSV	Underway XSV	17	47.244	Ν	147	5.858	Ε	03:00	06.07.2022	3880	/
GeoB24913-1	SO292/2_13	OFOS	Cerulean Springs	19	9.692	Ν	147	1.993	Е	19:39	06.07.2022	3445	/
GeoB24914-1	SO292/2_14	GC	Cerulean Springs	19	10.091	Ν	147	3.014	Е	01:18	07.07.2022	3462	0
GeoB24914-2	SO292/2_14	GC	Cerulean Springs	19	10.094	Ν	147	2.999	Ε	03:36	07.07.2022	3465	200
GeoB24915-1	SO292/2_15	GC	Pacman - Background	19	13.570	Ν	147	0.393	Е	06:52	07.07.2022	4208	0
GeoB24916-1	SO292/2_16	DRG	Pacman - E Flank	19	14.795	Ν	146	56.598	Е	09:55	07.07.2022	3127	/
GeoB24917-1	SO292/2_17	GC	Pacman - Summit	19	15.099	Ν	146	55.964	Ε	13:51	07.07.2022	2997	165
GeoB24918-1	SO292/2_18	GC	Pacman - N Flank	19	15.880	Ν	146	56.779	Е	16:21	07.07.2022	3176	69
GeoB24919-1	SO292/2_19	TL	T measurement_Cerulean Springs	19	9.910	Ν	147	2.739	Е	19:45	07.07.2022	3487	/
GeoB24919-2	SO292/2_19	TL	T measurement_Cerulean Springs	19	10.433	Ν	147	2.763	Е	21:13	07.07.2022	3442	/
GeoB24919-3	SO292/2_19	TL	T measurement_Cerulean Springs	19	11.178	Ν	147	2.706	Е	23:05	07.07.2022	3684	/
GeoB24920-1	SO292/2_20	Observatory	NCB Observatory_Cerulean Springs	19	9.943	Ν	147	2.797	Е	02:32	08.07.2022	3458	/
GeoB24921-1	SO292/2_21	ParaS	Underway Mapping	19	9.325	Ν	147	2.727	Е	03:50	08.07.2022	3426	/
GeoB24921-2	SO292/2_21	SBE	Underway Mapping	19	9.325	Ν	147	2.727	Е	03:50	08.07.2022	3426	/
GeoB24921-3	SO292/2_21	ParaS	Mapping Basin	19	29.049	Ν	147	4.086	Е	05:40	08.07.2022	4772	/
GeoB24921-4	SO292/2_21	SBE	Mapping Basin	19	29.049	Ν	147	4.086	Е	05:40	08.07.2022	4772	/
GeoB24922-1	SO292/2_22	GC	Basin E Conical	19	38.921	Ν	146	58.909	Е	10:23	08.07.2022	5938	525
GeoB24923-1	SO292/2_23	GC	Basin E Conical	19	37.452	Ν	146	59.776	Е	14:26	08.07.2022	5939	536
GeoB24924-1	SO292/2_24	ParaS	Mapping Unknown MVs	19	37.438	Ν	146	59.768	Е	16:29	08.07.2022	5950	/
GeoB24924-2	SO292/2_24	SBE	Mapping Unknown MVs	19	37.438	Ν	146	59.768	Е	16:29	08.07.2022	5950	/
GeoB24924-3	SO292/2_24	ParaS	Mapping Unknown MVs	19	25.432	Ν	146	42.525	Е	18:31	08.07.2022	4744	/
GeoB24924-4	SO292/2_24	SBE	Mapping Unknown MVs	19	25.432	Ν	146	42.525	Е	18:31	08.07.2022	4744	/
GeoB24925-1	SO292/2_25	OFOS	Conical - W Flank	19	32.628	Ν	146	39.328	Е	01:02	08.07.2022	3093	/
GeoB24926-1	SO292/2_26	DRG	Conical - E Flank	19	34.452	Ν	146	42.546	Ε	06:55	09.07.2022	4136	/
GeoB24927-1	SO292/2_27	GC	Conical Summit	19	32.899	Ν	146	39.439	Е	11:04	09.07.2022	3080	0
GeoB24928-1	SO292/2_28	GC	Unknown MV#2 Summit	19	40.423	Ν	146	44.043	Е	14:04	09.07.2022	3358	188
GeoB24929-1	SO292/2_29	GC	Unknown MV#2 Flank	19	43.560	Ν	146	46.830	Е	16:52	09.07.2022	3446	361
GeoB24930-1	SO292/2_30	GC	Unknown MV#3 Flank	19	51.098	Ν	146	46.400	Е	20:00	09.07.2022	3710	272

GeoB24931-1	SO292/2_31	SBE	WA#2 To Alaskan EEZ	19	40.446	Ν	146	44.126	Е	15:16	09.07.2022	3398	/
GeoB24931-2	SO292/2_31	ParaS	WA#2 To Alaskan EEZ	19	40.446	Ν	146	44.126	Е	15:16	09.07.2022	3398	/
GeoB24931-3	SO292/2_31	ADCP	WA#2 To Alaskan EEZ	19	58.553	Ν	146	51.838	Е	22:11	09.07.2022	3859	/
GeoB24931-4	SO292/2_31	SBE	WA#2 To Alaskan EEZ	19	58.553	Ν	146	51.838	Е	22:11	09.07.2022	3859	/
GeoB24932-1	SO292/2_32	XSV	Underway XSV	32	17.610	Ν	156	26.874	Е	02:03	13.07.2022	4238	/
GeoB24933-1	SO292/2_33	XSV	Underway XSV	44	44.708	Ν	172	50.746	Е	18:15	16.07.2022	5870	/
GeoB24934-1	SO292/2_34	CO	New Caledonian EEZ To Alaskan EEZ	/									
GeoB24934-2	SO292/2_34	CC	New Caledonian EEZ To Alaskan EEZ	/									
GeoB24934-3	SO292/2_34	Ceilo	New Caledonian EEZ To Alaskan EEZ	/									
GeoB24934-4	SO292/2_34	MAXDOAS	New Caledonian EEZ To Alaskan EEZ	1									