Prof. Dr. Antje Boetius Max Planck Institute for Marina Microbiology Celsiusstr. 1 28359 Bremen Germany Tel.: +49 421 2028 860 Fax: +49 421 2028 690 email: aboetius@mpi-bremen.de

Short Cruise Report RV SONNE – SO242/2

Guayaquil – Guayaquil 28.08.2015 – 01.10.2015 Chief Scientist: Prof. Dr. Antje Boetius Captain: Oliver Meyer

Objectives

Leg 2 aimed at high resolution surveying of the impact of the DISCOL disturbance on the benthic community structure of microbial assemblages and ecosystem function, including geochemical fluxes. It will also provide an assessment of ecosystem state for various levels of nodule coverage. Scientific investigations during cruise SO242-2 include the study of communities of benthic organisms of different size classes (mainly mega-, meio-, and microfauna), connected to detailed studies of biogeochemical and food-web processes. Leg SO242-1 had assembled maps of the plough tracks in the working area (DISCOL experimental area; DEA) that were created in 1989 by means of a 'deep-sea plough'. Leg SO242-1 had planned to carry out high-resolution studies of the plough tracks, their immediate vicinity and the reference area outside DEA. In addition, localized disturbance experiments were planned. The main research questions were targeted at the effect of disturbances on different ecosystem compartments and processes including:

- Physicochemical habitat characteristics
- Geochemical and biogeochemical processes at the seafloor and in the bottom waters
- Composition of benthic assemblages (mainly mega-, meio-, and microfauna)
- Metabolic activity and transfer of energy and matter in benthic communities
- Release, bioaccumulation, and ecotoxicological effects of contaminants

Specific scientific questions to be addressed during leg 2 included:

- Have ecosystem functions such as respiration, productivity and nutrient remineralization recovered 26 years after the disturbance?
- How is the state of re-equilibration in the surface sediment 26 years after the
- disturbance?
- What will be the immediate release of chemical components during a sediment surface disturbance?
- What is the natural baseline of relevant ecosystem functions for areas of different nodule coverage?
- How do abundance, diversity and community structure of microorganisms and megafauna compare between disturbed (DEA) and undisturbed nearby sites?
- How do the diversity and morphotype composition of sessile and motile megafauna as derived from images from the 1980s compare to those in 2015 in the DEA and undisturbed control sites?

With the data, we will contribute mostly to JPIO WP2 that will investigate the biodiversity and community structure of benthic microbial and metazoan communities at disturbed and undisturbed sites in the DISCOL area. As contribution to WP3 we will investigate geochemical and biogeochemical conditions and processes in the surface sediments, to quantify solute fluxes across the sediment-water interface and trophic interactions including the flow of energy and the bioaccumulation of metals and other toxicants. Additionally, by in situ experimentation with the ROV, and by deploying in situ pumps on a CTD water sampler, we will contribute data to WP4, assessing potential impacts resulting from the release and dispersion of sediment plumes in the water column. We have put a lot of attention to data management for the fully integrated ecological studies (WP6), and to communication of observations and first results to the public already during the cruise by interviews, and a project blog.

Narrative

The mission SO242/2 started on 28 August 2016. We left the port of Guayaquil at around noon, after the last bits of freight and technical support had been provided to the ship. It took about 4 hours to transit the river Guayas, and then 2 days to reach our working area, the DISCOL experimental area DEA at 7°S and 88.5°W (Fig. 3.1). Due to good weather conditions, the new SONNE could reach an average velocity of around 14 knots.

We started a multibeam survey (station 137-1) when we had left the EEZ of Peru, at 10 pm UTC on 30 August. Station work started with a CTD to set the sound velocity profiles and to get an impression of the background turbidity in the waters. We detected a large oxygen minimum zone hovering above our working area, extending from 150 to 1000 m with oxygen concentration below 63 μ M, and reaching almost zero between 400-600, which we observed during the cruise as a side program in addition to our deep CTD casts.

In the night we carried out the first OFOS track to get an impression of seafloor landscapes and the nodule coverage, as well as the main types disturbance traces and fauna to be surveyed in the coming weeks. We also placed the first combined chamber and profiler lander to measure respiration rates in undisturbed zones of low nodule coverage.

On 31 August we started the day with the first ROV dive targeting the plough tracks of the western DEA. We quickly identified typical microhabitats that were created by the 1989 ploughing activities: the plough pushed the otherwise very smooth abyssal deep-sea muds into ripples, and created heaps of mud at the side of the tracks. Inside the tracks, sometimes the brownish surface sediments were completely scraped off and we could see the whitish-grey color of the underlying subsurface sediments. In the early morning hours of 1 September we placed another chamber lander, and a deep-sea elevator to transport our sampling equipment to the seafloor for the next ROV dives. We quickly developed a routine for the dives, with an exchange of elevators before and after the dives, and an almost daily ROV dive from 08:30 am till about 8:00 pm. Every 4-5 days, one day was used for ROV maintenance and other station works.

The deep-sea elevators are deployed by a telemetry-navigated launcher, that allows precise positioning of the elevators next to the tracks, to minimize the dive time needed to place and recover our various instruments. We sampled the DEA West plough track between 01 and 04 September with ROV dives during the day, and CTD with in situ pumps, and OFOS surveys during the nights. The in situ pumps filter large volumes of waters, we use them to determine the baseline particle content in bottom waters from natural turbidity, as well as to obtain information as to the increase in turbidity due to surveying activities.

The Southern Reference area was sampled by multiple corer, to complete the measurements of leg 242/1. Between 5 and 10 September, we focused on the East DEA and deployed experiments for food web studies (CUBEs, Respirometers), ecotoxicology (Corrals) in and around plough tracks. We also carried out the high-resolution sampling for biogeochemistry, meiofauna and microbiology a second time, in a plough track with clear signs of plume sedimentation. On 8 September a highlight of the dive 196 was the deployment of the new ROBEX crawler Tramper for technical tests. At night between dives, we alternated between the OFOS and the CTD with in situ pumps. In the early morning hours, we redeployed the elevator with the in situ biogeochemical tools, the benthic chamber and profiler. Any gap in the program we filled with Parasound tracks to contribute to the sonar survey of the area started by leg 242/1. On 11 September we dove at the Southern Reference area, to start a small disturbance experiment (Sediment dispensers) aiming to test the response of meiofauna to getting covered by nodule debris.

We also recovered and redeployed landers and carried out more in situ pumping of bottom waters. On 13 September, we carried out a short dive to test a hyperspectral camera for deep-sea surveys, and to look for the LBL mooring of leg 242-1 that was not recovered due to imploded glass spheres. Between 15-16 September we continued diving for the experiments at the Southern Reference, and did some more OFOS and parasound surveys at night.

Then we started the next sampling and survey set in the Southwestern area of the DEA where fresh tracks of the epibenthic sledge used during leg 242/1 crossed old plough tracks. During OFOS surveys we found that the fresh sledge marks of a few meters width could serve as a new disturbance category for our measurements, to compare benthic functions and geochemical processes to the old tracks that were created 26 years earlier.

We sampled the EBS track between 17-21 September, and then returned on 22 September to the Southern Reference to recover the samples from the "sediment dispenser" experiment by a dedicated ROV dive. This dive (216) was also used to deploy the ROBEX Crawler "Tramper" a second time and observe its behavior at the deep-sea floor. Unfortunately it did not release, and had to be recovered by the ship's wire hooked into the crawler by the ROV which stayed at the seafloor until the crawler was safely recovered.

During the last week of the expedition we deployed experiments in the central DEA and sampled in high-resolution the microhabitats of the 12m-wide plough tracks between 23-26 September. At night, we carried out lander recoveries and deployments, the last shallow (OMZ survey) and deep CTD casts and more OFOS dives. The OFOS strategy was to collect similar amounts of seafloor images from the DEA and its surrounding reference areas, as well as for the different habitat categories "plough track", "next to track", "undisturbed DEA". Finally, also a calibration dive was carried out, to repeat a dive of the OFOS of leg 242-1 at 3.5 m above seafloor. On 26 and 27 September winds increased to 6-7 Bft, and wave height to 4 m. Hence, on 27 September we could not dive with the ROV. All other station work was not affected, and we could retrieve all moorings and landers as planned, including the BoBo lander and thermistor mooring of leg 242/1. Also, we carried out another multiple corer sampling of the Central DEA 15 m off the plough track by precise Posidonia positioning. On 28 September weather conditions slightly improved, and a last scientific ROV dive was carried out at Central DEA to recover the remaining instruments and experiments from the seafloor.

The last ROV dive was dedicated to the search of the DOS lander (221-1), which we could not release, despite multiple attempts. It was placed on a mound structure with very rough and rocky terrain. The ROV could not find the DOS lander by its sonar, and it was given up shortly before the last station works of this cruise leg. The last OFOS dive was carried out on 29 September to rescue the collapsed LBL mooring by mounting a hook to the OFOS frame and using the ship's high resolution DP to hover above the mooring position. The recovery was successful. After the retrieval of the last benthic lander from the central DEA, the station work was ended on 29 September at 10:00 UTC, and the transit back to Guayaquil was started, along a multibeam track for seafloor mapping (station 237-1).

We arrived at the Guayas pilot station in the early morning hours of the 1 October, and end the cruise in Guayaquil port (Ecuador). The leg SO242/2 to the DEA with the new SONNE and the ROV Kiel 6000 was highly successful, the working program was completed to almost 100%. All 40 scientists on board thank captain and crew of RV SONNE for the excellent support at sea.

Acknowledgements

We thank captain and crew of SO242-2 for their excellent support with work at sea, and the Control Station German Research Vessels Hamburg for help with expedition preparations and logistics. This expedition contributes to the project JPIO Pilot Action "Ecological aspects of deep-sea mining" and was funded by the BMBF (03F0707A-G). We acknowledge further financial support from the Helmholtz Association (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven), the Max Planck Society; NWO (Netherlands Organisation for Scientific Research / Nederlandse Organisatie voor Wetenschappelijk Onderzoek) grant 856.14.002; the Portuguese Science Foundation FCT (IF/00029/2014/CP1230/CT0002). The research has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, grant agreement n∞ 603418.

Teilnehmerliste / Participants

1.	Prof. Dr. Antje Boetius	Fahrtleiterin / Chief Scientist	MPI / AWI
2.	Dr. Fritz Abegg	ROV Team Koordinator / ROV team coordinator	GEOMAR
3.	Volker Asendorf	Landertechniker /lander technician	MPI
4.	Jana Bäger	Laborechnikerin Mikrobiologie / Lab technician Microbiology	MPI
5.	Jakob Barz	Laborechniker TV-MUC / Lab technician TV-MUC	MPI
6.	Viola Beier	Labortechnikerin Biogeochemie / Lab technician Biogeochemistry	MPI
7.	Harald Biebow	Techniker OFOS / Technician OFOS	iSiTEC
8.	Anke Bleyer	Labortechnikerin Geochemie / Lab technician geochemistry	GEOMAR
9.	Matthias Bodendorfer	ROV Pilot / ROV pilot	GEOMAR
10.	Seinab Bohsung	Studentin Metallgeochemie / Student metal geochemistry	JUB
11.	Dr. Alastair Brown	Wissenschaftler Ecotox Untersuchungen / Scientist ecotox studies	USOU
12.	Patrick Cuno	ROV Pilot / ROV pilot	GEOMAR
13.	Samuel Müller	Student KIPS Probennehmer / Student KIPS sampler	CAU Kiel
14.	Dr. Mattias Haeckel	Wissenschaftler Geochemie / Scientist geochemistry	GEOMAR
15.	Kristin Hamann	Wissenschaftlerin Geochemie / Scientist geochemistry	GEOMAR
16.	Jan Hennke	ROV Pilot / ROV pilot	GEOMAR
17.	Dr. Felix Janssen	Wissenschaftlerbenthische Flüsse / Scientist benthic fluxes	MPI / AWI
18.	Dr. Johannes Lemburg	Crawler Ingenieur / Crawler engineer	MPI / AWI
19.	Dr. Peter Linke	Wissenschaftler BBL Studien / Scientist BBL studies	GEOMAR
20.	Lidia Lins	Doktorandin Meiofauna / PhD student meiofauna	UGent
21.	Dr. Yann Marcon	Wissenschaftlerhabitat mapping / Scientist habitat mapping	MPI / AWI
22.	Arne Meier ROV	Pilot / ROV pilot	GEOMAR
23.	Lisa Mevenkamp	Doktorandin Meiofauna / PhD student meiofauna	UGent
24.	Stein Melvær Nornes	Doktorand hyperspektrale Aufnahmen / PhD student hyperspectral imaging	NTNU
25.	Sophie Paul	Doktorandin Metallgeochemie / PhD student metal geochemistry	JUB
26.	Martin Pieper	ROV Pilot / ROV pilot	GEOMAR
27.	Miriam Plöger	ROV Pilot / ROV pilot	GEOMAR
28.	Dr. Autun Purser	Wissenschaftler Megafauna surveys / Scientist megafauna surveys	JUB
29.	Dr. Sebastian Roessler	Datenmanager, CTD, Parasound / Data manager, CTD, Parasound	FIELAX
30.	Fabian Schramm	ROV ModulTechniker / ROV payload technician	MPI
31.	Manfred Schulz	Dokumentation (Filmer) / Documentation (Film Maker)	Manfred Schulz TV & Film
32.	Ralf Schwarz	Techniker Elevator / Technician elevator	GEOMAR
33.	Rafael Stiens	Labortechniker Biogeochemie / Lab technician biogeochemistry	MPI
34.	Tanja Stratmann	Doktorand Nahrungsnetzstudien / PhD student food web studies	NIOZ
35.	Dr. Inken Suck	ROV Pilot / ROV pilot	GEOMAR
36.	Dr. Andrew K. Sweetman	Wissenschaftler Nahrungsnetzstudien / Scientist food web studies	IRIS
37.	Dr. Dick van Oevelen	Wissenschaftler Nahrungsnetzstudien / Scientist food web studies	NIOZ
38.	Tobias Vonnahme	Master Student Mikrobiologie / Masters student mircrobiology	MPI
39.	Dr. Frank Wenzhoefer	Wissenschaftler benthische Flüsse / Scientist benthic fluxes	MPI / AWI
40.	Cäcilia Wigand	Laborechnikerin Mikrosensoren / Lab technician Microsensors	MPI

Institute / Institutes

Abbreviation	Institute	City	Country
AWI	Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research	Bremerhaven	Germany
CAU	Kiel Christian-Albrechts-University	Kiel	Germany
FIELAX	Gesellschaft für wissenschaftliche Datenverarbeitung mbH	Bremerhaven	Germany
GEOMAR	Helmholtz Centre For Ocean Research	Kiel	Germany
IRIS	International Research Institute of Stavanger	Randaberg	Norway
iSiTEC	iSiTEC GmbH	Bremerhaven	Germany
JUB	Jacobs University Bremen GmbH	Bremen	Germany
MPI	Max-Planck-Institute for Marine Microbiology	Bremen	Germany
NIOZ	Royal Netherlands Institute for Sea Research	Texel / Yerseke	Netherlands
NTNU	NTNU Norwegian University of Science and Technology	Trondheim	Norway
Ugent	UGent Ghent University	Gent	Belgium
USOU	University of Southampton	Southampton	United Kingdom

Stations list

Station	DateTime [UTC]	Device	SHIP_Lat	SHIP_Lon	DEVICE_Lat	DEVICE_Lon	Depth
242-2_137-1	29.08.2015 22:21:00	Parasound P70	-4:50.391	-84:51.78			4053.7
242-2_137-1	30.08.2015 17:10:00	Parasound P70	-7:03.91	-88:27.991			4140.4
242-2_138-1	30.08.2015 19:30:23	CTD	-7:04.418	-88:27.859			4140.6
242-2_139-1	31.08.2015 03:34:03	OFOS	-7:07.97	-88:26.962	-7:07.837	-88:27.012	4120.9537
242-2_140-1	31.08.2015 07:52:00	Parasound P70	-7:01.534	-88:28.528			4052.4
242-2_140-1	31.08.2015 10:28:51	Parasound P70	-7:04.586	-88:27.078			4149.5
242-2_141-1	03.09.2015 07:00:59	LANDER (generic)	-7:04.544	-88:27.027	-7:04.611	-88:27.048	4148.1
242-2_142-1	31.08.2015 14:55:43	Remote Operated Vehicle	-7:04.443	-88:27.835	-7:04.443	-88:27.886	4129.32
242-2_143-1	01.09.2015 00:47:42	OFOS	-7:03.239	-88:29.352	-7:03.253	-88:29.37	4186.0552
242-2_144-1	01.09.2015 06:51:06	LANDER (generic)	-7:04.438	-88:27.816	-7:04.43	-88:27.823	4130
242-2_145-1	01.09.2015 10:41:32	Deep-sea Elevator	-7:04.435	-88:27.818	-7:04.453	-88:27.812	4134.2
242-2_146-1	01.09.2015 15:10:14	Remote Operated Vehicle	-7:04.463	-88:27.797	-7:04.419	-88:27.851	4130.08
242-2_147-1	02.09.2015 04:51:01	Multi Corer	-7:06.042	-88:24.84	-7:06.058	-88:24.835	4198.2
242-2_148-1	02.09.2015 08:35:00	Multi Corer	-7:06.039	-88:24.835	-7:06.053	-88:24.827	4195.8
242-2_149-1	02.09.2015 12:14:13	CTD	-7:05.947	-88:25.371			4196.5
242-2_150-1	02.09.2015 15:22:18	Remote Operated Vehicle	-7:04.448	-88:27.837	-7:04.42	-88:27.852	4079.2
242-2_151-1	03.09.2015 03:32:59	Multi Corer	-7:06.033	-88:24.836			4197.8
242-2_152-1	03.09.2015 06:20:08	CTD	-7:04.545	-88:27.032			4139.7
242-2_153-1	03.09.2015 12:02:12	Deep-sea Elevator	-7:04.434	-88:27.817	-7:04.434	-88:27.823	4134.8
242-2_154-1	03.09.2015 15:11:38	Remote Operated Vehicle	-7:04.469	-88:27.785	-7:04.443	-88:27.823	4091.03333
242-2_155-1	04.09.2015 04:27:30	OFOS	-7:04.484	-88:28.68	-7:04.506	-88:28.753	4128.6891
242-2_156-1	08.09.2015 13:51:14	LANDER (generic)	-7:07.743	-88:27.108			4157.8
242-2_157-1	04.09.2015 14:57:20	CTD	-7:04.418	-88:27.85			4133.1
242-2_158-1	07.09.2015 04:40:33	LANDER (generic)	-7:07.51	-88:27.026	-7:07.455	-88:26.98	4045
242-2_159-1	07.09.2015 07:57:21	LANDER (generic)	-7:06.018	-88:24.85	-7:05.991	-88:24.778	4143.5
242-2_160-1	05.09.2015 00:01:07	OFOS	-7:04.06	-88:27.261	-7:04.051	-88:27.263	4142.3105

Station	DateTime [UTC]	Device	SHIP_Lat	SHIP_Lon	DEVICE_Lat	DEVICE_Lon	Depth
242-2_161-1	05.09.2015 03:17:39	Parasound P70	-7:00.064	-88:26.817			4064
242-2_161-1	05.09.2015 08:27:32	Parasound P70	-7:04.009	-88:26.658			4168.9
242-2_162-1	05.09.2015 11:28:54	Deep-sea Elevator	-7:04.453	-88:27.042	-7:04.458	-88:27.04	4134.2
242-2_163-1	05.09.2015 15:09:59	Remote Operated Vehicle	-7:04.525	-88:26.939	-7:04.463	-88:27.016	4085.22727
242-2_164-1	06.09.2015 01:19:59	OFOS	-7:03.981	-88:27.111	-7:03.976	-88:27.112	4149.3257
242-2_165-1	08.09.2015 01:55:00	Deep-sea Elevator	-7:04.517	-88:26.933	-7:04.44	-88:26.941	4034.6
242-2_166-1	06.09.2015 15:00:25	Remote Operated Vehicle	-7:04.519	-88:26.991	-7:04.473	-88:27.046	4099.1
242-2_167-1	07.09.2015 02:39:51	CTD	-7:07.506	-88:27.03			3912.2
242-2_168-1	07.09.2015 09:57:28	Parasound P70	-7:06.031	-88:24.896			4196.3
242-2_168-1	07.09.2015 13:07:10	Parasound P70	-7:04.482	-88:26.928			4133.1
242-2_169-1	07.09.2015 15:21:15	Remote Operated Vehicle	-7:04.508	-88:26.895	-7:04.472	-88:26.916	4099.38
242-2_170-1	07.09.2015 18:06:11	Benthic Crawler	-7:04.509	-88:26.891	-7:04.522	-88:26.91	4142.32975
242-2_171-1	08.09.2015 06:10:42	OFOS	-7:04.39	-88:28.223	-7:04.396	-88:28.242	4136.1018
242-2_172-1	08.09.2015 17:58:01	CTD	-7:04.48	-88:26.927			4131.1
242-2_173-1	08.09.2015 23:00:35	Parasound P70	-7:04.047	-88:27.299			4134.6
242-2_173-1	09.09.2015 00:33:02	Parasound P70	-7:04.304	-88:27.263			4138.7
242-2_174-1	09.09.2015 02:07:07	OFOS	-7:04.385	-88:27.466	-7:04.377	-88:27.461	4155.387
242-2_175-1	09.09.2015 12:07:39	Deep-sea Elevator	-7:04.449	-88:26.928	-7:04.456	-88:26.941	4118.3
242-2_176-1	09.09.2015 15:11:32	Remote Operated Vehicle	-7:04.523	-88:26.924	-7:04.478	-88:26.921	4100.11429
242-2_177-1	10.09.2015 03:00:50	OFOS	-7:04.663	-88:28.392	-7:04.655	-88:28.447	4139.0105
242-2_178-1	10.09.2015 11:57:33	Benthic Crawler	-7:04.461	-88:26.863	-7:04.469	-88:26.884	4141.34545
242-2_179-1	10.09.2015 15:07:29	Remote Operated Vehicle	-7:04.509	-88:26.901	-7:04.468	-88:26.92	4049.86154
242-2_180-1	14.09.2015 15:35:06	LANDER (generic)	-7:07.68	-88:27.21			4156.7
242-2_181-1	11.09.2015 08:21:30	Parasound P70	-7:07.903	-88:27.017			4157.2
242-2_181-1	11.09.2015 10:18:33	Parasound P70	-7:07.993	-88:27.036			4171.9
242-2_182-1	11.09.2015 13:23:42	Deep-sea Elevator	-7:07.51	-88:27.012	-7:07.514	-88:27.036	4152.7
242-2_183-1	11.09.2015 16:31:13	Remote Operated Vehicle	-7:07.569	-88:26.96	-7:07.512	-88:27.048	4104.9625

Station	DateTime [UTC]	Device	SHIP_Lat	SHIP_Lon	DEVICE_Lat	DEVICE_Lon	Depth
242-2_184-1	12.09.2015 03:54:13	OFOS	-7:07.651	-88:27.188	-7:07.653	-88:27.2	4152.7457
242-2_185-1	12.09.2015 11:01:22	Deep-sea Elevator	-7:07.506	-88:27.02	-7:07.522	-88:27.014	4144.9
242-2_186-1	15.09.2015 02:50:35	LANDER (generic)	-7:04.566	-88:31.575	-7:04.568	-88:31.606	4106.3
242-2_187-1	15.09.2015 05:18:30	LANDER (generic)	-7:04.682	-88:28.622	-7:04.707	-88:28.462	4136.5
242-2_188-1	12.09.2015 16:26:54	Remote Operated Vehicle	-7:07.542	-88:27.009	-7:07.512	-88:27.039	4179.05714
242-2_189-1	13.09.2015 02:55:21	OFOS	-7:04.547	-88:28.443	-7:04.525	-88:28.472	4139.917
242-2_190-1	13.09.2015 10:43:46	CTD	-7:05.344	-88:26.764			4005
242-2_191-1	13.09.2015 16:00:04	Remote Operated Vehicle	-7:05.432	-88:26.719	-7:05.403	-88:26.775	4185.45
242-2_192-1	13.09.2015 22:13:26	Parasound P70	-6:50.316	-88:27.012			4219.2
242-2_192-1	14.09.2015 15:09:26	Parasound P70	-7:07.766	-88:26.97			4145.4
242-2_193-1	14.09.2015 19:06:00	CTD	-7:07.524	-88:27.013			4140.5
242-2_194-1	15.09.2015 02:36:11	Multi Corer	-7:04.566	-88:31.574	-7:04.567	-88:31.596	4078.88
242-2_195-1	15.09.2015 09:06:17	OFOS	-7:07.5	-88:26.983	-7:07.5	-88:27	4152.077
242-2_196-1	15.09.2015 15:25:07	Remote Operated Vehicle	-7:07.576	-88:26.999	-7:07.529	-88:27.057	4181.3
242-2_197-1	16.09.2015 04:36:54	OFOS	-7:04.019	-88:28.915	-7:04.022	-88:28.93	4139.6784
242-2_198-1	16.09.2015 15:17:28	Remote Operated Vehicle	-7:07.578	-88:27.002	-7:07.537	-88:27.056	4166.6
242-2_199-1	17.09.2015 01:32:49	Parasound P70	-7:07.585	-88:27.319			4143.3
242-2_199-1	17.09.2015 05:22:00	Parasound P70	-7:04.822	-88:28.269			4138.5
242-2_200-1	17.09.2015 08:07:46	Deep-sea Elevator	-7:04.974	-88:28.165	-7:04.992	-88:28.164	3984.8
242-2_201-1	17.09.2015 12:13:25	Deep-sea Elevator	-7:04.983	-88:28.163	-7:05.003	-88:28.155	4137.8
242-2_202-1	17.09.2015 15:30:50	Remote Operated Vehicle	-7:05.016	-88:28.138	-7:04.981	-88:28.178	4177.2
242-2_203-1	18.09.2015 03:27:35	OFOS	-7:03.236	-88:28.015	-7:03.239	-88:28.028	4140.2613
242-2_204-1	18.09.2015 14:00:54	CTD	-7:06.083	-88:27.259			4135.8
242-2_205-1	18.09.2015 17:08:12	Remote Operated Vehicle	-7:05.003	-88:28.16	-7:04.969	-88:28.192	4175.9
242-2_206-1	19.09.2015 05:26:12	OFOS	-7:05.386	-88:27.777	-7:05.394	-88:27.797	4156.8982
242-2_207-1	19.09.2015 15:42:09	CTD	-7:04.977	-88:28.162			4141.7
242-2_208-1	19.09.2015 22:12:42	Multi Corer	-7:07.536	-88:27.031	-7:07.532	-88:27.041	4071.46977

Station	DateTime [UTC]	Device	SHIP_Lat	SHIP_Lon	DEVICE_Lat	DEVICE_Lon	Depth
242-2_209-1	20.09.2015 02:16:36	CTD	-7:04.983	-88:28.166			4134.1
242-2_210-1	22.09.2015 04:56:45	Deep-sea Elevator	-7:04.893	-88:28.279	-7:05.006	-88:28.204	4130.2
242-2_211-1	20.09.2015 15:14:35	Remote Operated Vehicle	-7:05.019	-88:28.14	-7:04.996	-88:28.193	4169.63333
242-2_212-1	21.09.2015 01:12:08	OFOS	-7:05.579	-88:27.413	-7:05.581	-88:27.426	4078.2985
242-2_212-2	21.09.2015 10:34:00	LANDER (generic)	-7:04.024	-88:29.148			4117.7
242-2_213-1	21.09.2015 15:08:47	Remote Operated Vehicle	-7:05.01	-88:28.125	-7:04.998	-88:28.153	4181.9
242-2_214-1	25.09.2015 11:58:38	LANDER (generic)	-7:07.261	-88:27.157			4126.4
242-2_215-1	22.09.2015 13:08:00	Benthic Crawler	-7:07.534	-88:27.023	-7:07.532	-88:27.041	4126.93636
242-2_216-1	22.09.2015 16:36:27	Remote Operated Vehicle	-7:07.55	-88:27.002	-7:07.522	-88:27.032	4169.01429
242-2_217-1	23.09.2015 10:30:53	Deep-sea Elevator	-7:04.679	-88:27.466	-7:04.682	-88:27.481	4149.1
242-2_218-1	23.09.2015 14:50:49	Deep-sea Elevator	-7:04.682	-88:27.456	-7:04.683	-88:27.471	4143.8
242-2_219-1	23.09.2015 18:05:11	Remote Operated Vehicle	-7:04.722	-88:27.434	-7:04.685	-88:27.483	4170.15
242-2_220-1	24.09.2015 05:23:41	OFOS	-7:07.737	-88:25.945	-7:07.75	-88:25.962	4158.6908
242-2_221-1	24.09.2015 13:19:06	LANDER (generic)	-7:00.131	-88:26.551			3884.5
242-2_222-1	24.09.2015 16:29:41	Remote Operated Vehicle	-7:04.729	-88:27.423	-7:04.704	-88:27.46	4174.14286
242-2_223-1	25.09.2015 05:16:19	OFOS	-7:04.793	-88:28.209	-7:04.806	-88:28.218	4124.7415
242-2_224-1	25.09.2015 16:25:45	CTD	-7:07.354	-88:24.195			4201.5
242-2_225-1	25.09.2015 21:33:17	LANDER (generic)	-7:03.932	-88:27.034	-7:03.954	-88:27.094	4145.41429
242-2_226-1	26.09.2015 02:06:14	LANDER (generic)	-7:04.695	-88:27.371	-7:04.69	-88:27.389	4147.91538
242-2_227-1	26.09.2015 05:18:08	OFOS	-7:04.639	-88:28.157			4128.7
242-2_228-1	26.09.2015 14:57:52	Deep-sea Elevator	-7:04.675	-88:27.463	-7:04.68	-88:27.478	4117.3
242-2_229-1	26.09.2015 18:23:04	Multi Corer	-7:04.697	-88:27.397	-7:04.698	-88:27.418	4105.98889
242-2_230-1	26.09.2015 21:56:30	LANDER (generic)	-7:07.479	-88:25.499			4145.7
242-2_231-1	27.09.2015 02:42:37	OFOS	-7:03.927	-88:32.306	-7:03.923	-88:32.317	4116.8638
242-2_232-1	27.09.2015 15:33:46	Remote Operated Vehicle	-7:04.717	-88:27.427	-7:04.68	-88:27.488	4168.3
242-2_233-1	28.09.2015 08:39:09	OFOS	-7:04.358	-88:27.997	-7:04.365	-88:28.009	4131.0221
242-2_234-1	28.09.2015 14:28:39	Mooring	-7:07.065	-88:24.537	-7:07.349	-88:24.195	4180.3

Station	DateTime [UTC]	Device	SHIP_Lat	SHIP_Lon	DEVICE_Lat	DEVICE_Lon	Depth
242-2_235-1	28.09.2015 22:54:40	Remote Operated Vehicle	-7:00.097	-88:26.456	-7:00.085	-88:26.516	3860.825
242-2_236-1	29.09.2015 07:17:22	OFOS	-7:05.362	-88:26.76	-7:05.351	-88:26.774	4135.6
242-2_237-1	29.09.2015 11:41:51	KONGSBERG EM122	-7:04.806	-88:27.427			4140.2
242-2_237-1	30.09.2015 09:00:00	KONGSBERG EM122	-5:23.356	-84:43.897			3986.6