
Dr. Thomas Kuhn Bundesantsalt für Geowissenschaften und Rohstoffe (BGR) Stilleweg 2 30655 Hannover Germany Tel: +49 511 643 3780 Fax: +49 511 643 3663 E-Mail: thomas.kuhn@bgr.de

# Short Cruise Report R.V. Sonne Cruise SO-240

Manzanillo – Manzanillo 03.05. – 15.06.2015 Chief Scientist: Thomas Kuhn Captain: Lutz Mallon



# **Objectives**

Hydrothermal fluids can withdraw significant amounts of heat from the oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Basement outcrops in-between impermeable pelagic sediments permit seawater recharge and discharge of altered and slightly heated seawater. A recharge site has been detected on the flank of one of the numerous seamounts in the working area in the equatorial E-Pacific during earlier investigations. Moreover, successions of small basins typical for "hydrothermal pits" occur which could be interpreted as fossil discharge sites.

The objective of this project will be to investigate the regional pattern of seawater circulation within the basaltic seafloor based on seismic surveys, heat flow measurements and pore-water geochemistry. Recharge of oxic seawater causes upward oxygen diffusion into the sediments overlying the permeable basalt in areas proximal to the recharge sites (seamounts or basalt outcrops). The prolonged oxygen exposure time is suggested to have a strong impact on biogeochemical processes in the sediments and the element inventory of Manganese nodules. The quantitative investigation of such processes and element enrichments and their range of influence around recharge sites is thus the second objective of this project. An additional goal will be to investigate whether fluid circulation through 21 Million years old crust can mobilize metals and affect metal flux rates into sediments and nodules at possible discharge sites.

## Narrative of the cruise

Cruise SO-240 started on May 3<sup>rd</sup>, 2015 with the embarkation of the scientific crew and the unloading of our containers in the port of Manzanillo, which is situated on the Pacific coast of Mexico. The new research vessel SONNE set sail on Monday afternoon, May 4<sup>th</sup>; the departure being delayed by half a day due to the late pickup of frozen samples from the previous cruise. During the 900-nm-long transit to the working area, which is situated to the southwest of Manzanillo, our seismic gear was successfully tested and the scientists were busy installing their equipment in the laboratories. On May 5<sup>th</sup>, scientists were introduced to the hydro-acoustic systems onboard and were made familiar with security systems of the vessel. In a first science meeting, the scientific objectives and the technical approaches of this cruise were discussed. We arrived at working area 1 on May 7<sup>th</sup> at noon, starting with a first CTD for the calibration of the swath echo-sounding system EM 122.

During SO-240, four working areas were investigated, generally starting with a seismic and bathymetric survey in each area, and following up with heat flow profiles. The results of these geophysical measurements formed the basis for deciding on suitable locations for sediment sampling, which included taking long piston or gravity cores, multicores, and box cores. The long cores were split into 1 m segments immediately after recovery and stored in the cool room (at 4°C) for at least 12 hours so that the sediments could re-equilibrate to the temperature conditions prevailing at the seafloor. After 12 hours, the oxygen content of the pore water was measured along high-resolution profiles along all core segments using oxygen micro-electrodes. This procedure was followed up by pore water sampling, sedimentological description, and sub-sampling. One core from the multicorer was treated in the same way, the other 11 cores being used for biological and geochemical analyses. The near-bottom seawater was also sub-sampled from the multicorer. The box corer provides a seafloor sample with a pre-defined surface area (50 x 50 cm) and 40 to 50 cm sediment thickness. Manganese nodules were collected from the sediment surface and sub-samples from the sediments

were taken at 3 cm intervals. Working areas were further investigated using a video sledge equipped with video and photo cameras, Niskin bottles, a CTD, oxygen, chlorophyll, and turbidity sensors, a 5-function manipulator for rock sampling as well as three thrusters for enhancing the small-scale maneuverability of the sledge.

Working areas 1 to 3 are situated to the east (WA-1), south (WA-2), and southwest (WA-3) of a large seamount complex. The center of WA-1 is a small seamount named Teddy Bare due to its topographic features, and we investigated the fluid flux in the vicinity of this and other seamounts until May 16<sup>th</sup> by carrying out three seismic surveys, six heat flow profiles, 15 sediment stations, two video stations and one dredge station.

WA-2 is characterized by a group of small seamounts to the north that rises up to 800 m above the surrounding seafloor with a basal radius of 1 to 2 km, and by NNW-SSE oriented basins and ridges to the south. We investigated this area with a size of 35 km x 30 km between May  $17^{\text{th}}$  and May  $21^{\text{st}}$  by carrying out three seismic surveys, three heat flow profiles, 12 sediment stations, and three video stations.

WA-3 is situated about 50 to 90 km to the southwest of the largest seamount in this area, a structure with a basal diameter of 25 km rising more than 3000 m above its surroundings. Between May  $22^{nd}$  and May  $28^{th}$ , we investigated small basins oriented parallel to the general basin and ridge structures of the seafloor and carried out heat flow profiles perpendicular to them. In the meantime, hurricane "Andres" developed a few hundred kilometers east-southeast of our position. As it started moving in our direction, we had to leave the working area early on May  $29^{th}$  and sailed to  $10^{\circ}$ N and  $120^{\circ}$ W.

We used the time in this refuge area (working area X; WA-X) to carry out heat flow measurements far away from the influence of seamounts. In order to do this, we had to map the area first, which took place between May 29<sup>th</sup> and 30<sup>th</sup>. One heat flow profile and a box core station were carried out on May 30<sup>th</sup> and 31<sup>st</sup>, after which we could transit to working area 4 (WA-4) on June 1<sup>st</sup>.

WA-4 is located about 200 to 300 km to the southeast of WAs 1-3. The so-called "Prospective Area #1" of the BGR Manganese nodule exploration campaign forms the central part of WA-4. In the latter area, two lander systems (DOS, BoBo) equipped with oceanographic measuring devices and a 400 m long thermistor mooring were deployed during the previous cruise SO-239. These systems were successfully recovered on June 2<sup>nd</sup> and 3<sup>rd</sup> together with four BGR moorings. The latter moorings have measured near-bottom current strengths and directions for more than one year. All data were downloaded, the instruments maintained and the four BGR moorings were re-deployed on June 6<sup>th</sup>. In the meantime, one CTD tow-yo and two CTD yo-yo stations, each 14 hours long, were carried out. All this work (3.5 days) took place as part of the project "EcoResponse" within the framework of the European "Joint Programming Initiative – Oceans" (JPI-O), which deals with the potential ecological impacts of future Manganese nodule mining. Amongst others, the data gathered during SO-240 will be used to model the hydrodynamic behavior of a sediment plume that may develop during Manganese nodule mining.

In addition to the JPI-O work in this area, we investigated small depressions (about 200 m x 400 m) that occur within a 10 km wide (E-W), 35 km long (N-S), and 100 to 150 m deep basin which marks the eastern boundary of WA-4. The seafloor in these depressions is characterized by a very low backscatter intensity, implying a soft sediment that may be typical for water escape structures. Our investigations furthermore show that the basaltic crust under the sediment cover is heavily faulted and

that many of these faults even reach to the seafloor and lead to an offset of the sediments, thus enabling fluid circulation in the basaltic crust far away from seamounts. Such conditions have also been detected in the western part of WA-4. In total, we carried out 100 km of seismic and 200 km of bathymetric survey, three heat flow profiles, nine sediment stations, and one station for the *in-situ* shear strength measurement of deep-sea sediments between June  $1^{st}$  and  $8^{th}$  in WA-4.

Finally, on June 9<sup>th</sup>, we returned to WA-1 in order to investigate a temperature anomaly which we had found after the analysis of CTD data in the water column immediately above the Teddy Bare seamount. Between June 9<sup>th</sup> and June 11<sup>th</sup>, we carried out additional heat flow profiles, four sediment stations, one CTD cast and one dredge drag in this area.

As a new hurricane "Carlos" was shaping up to the southeast of Manzanillo, R/V SONNE had to start her transit back to Manzanillo in the late afternoon of June 11<sup>th</sup>, where she arrived safely on Sunday morning at 8:30 local time. On the transit back to Manzanillo, the labs were cleaned, containers were packed, and a first synthesis of the cruise was presented during a final science meeting.

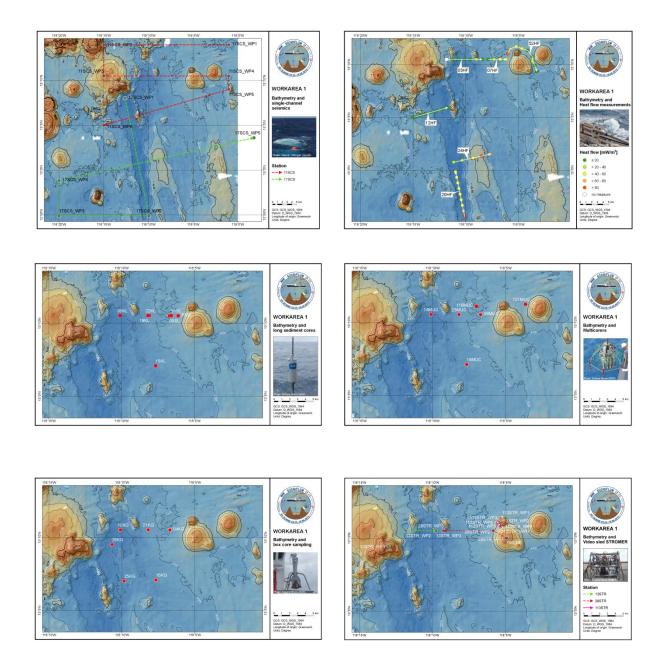



Figure 1. Maps of working area 1 of cruise SO-240.

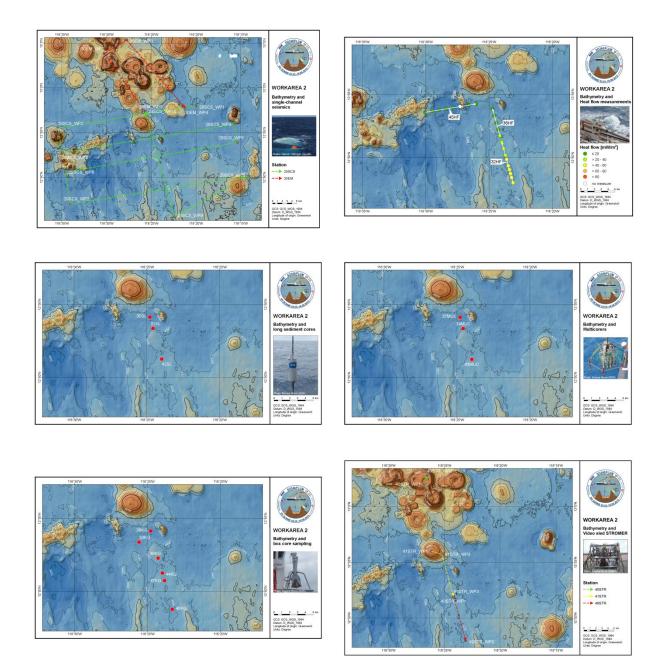



Figure 2. Maps of working area 2 of cruise SO-240.

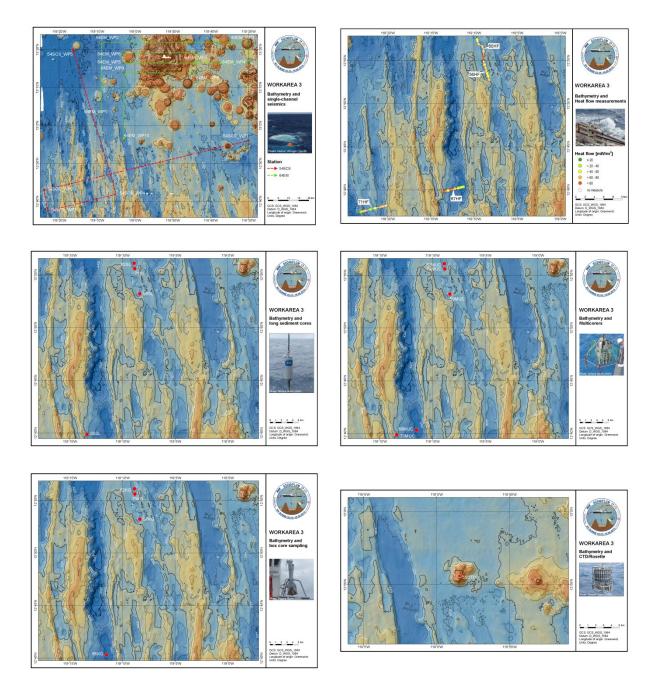



Figure 3. Maps of working area 3 of cruise SO-240.

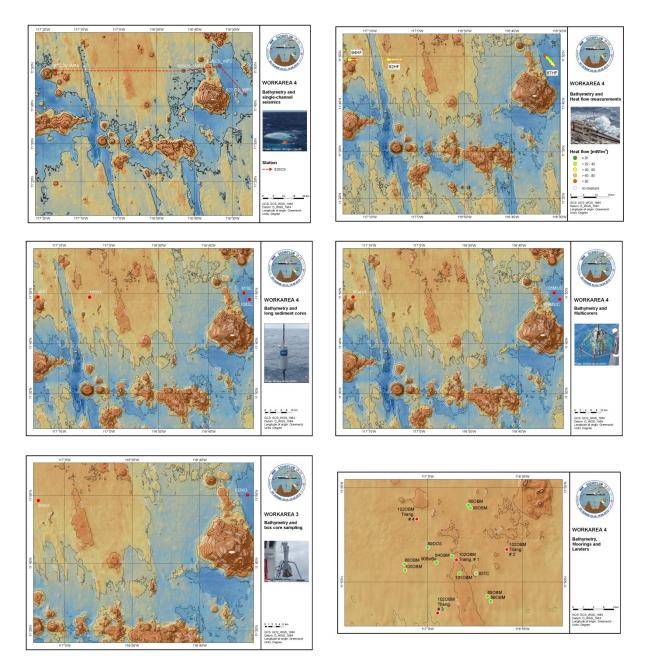



Figure 4. Maps of working area 4 of cruise SO-240.

## Acknowledgements

We thank Capt. Lutz Mallon and his crew for the excellent support during the SO-240 cruise - we really enjoyed working with them. The cruise was financed through BMBF grant 03G0240.

# **Cruise Participants**

| Nr. | Teilnehmer / Participant     | Aufgabe / Task                                                                   | Institution |
|-----|------------------------------|----------------------------------------------------------------------------------|-------------|
| 1   | Kuhn, Thomas, Dr.            | Fahrtleitung / Chief Scientist                                                   | BGR         |
| 2   | Heller, Christina, Dr.       | Knollen, Sedimente / nodules,<br>sediments                                       | BGR         |
| 3   | Lückge, Andreas, Dr.         | Knollen, Sedimente / nodules,<br>sediments                                       | BGR         |
| 4   | Rühlemann, Carsten, Dr.      | Knollen, Sedimente, stellv. Fahrtleiter / nodules, sediments, Co-Chief Scientist | BGR         |
| 5   | Stegger, Ulrich              | Knollen, Sedimente, GIS / nodules,<br>sediments, GIS                             | BGR         |
| 6   | Vink, Anemiek, Dr.           | Knollen, Sedimente, JPI-O / nodules,<br>sediments, JPI-O                         | BGR         |
| 7   | Wegorzewski, Anna, Dr.       | Knollen, Sedimente / nodules,<br>sediments                                       | BGR         |
| 8   | Heyde, Ingo, Dr.             | Wärmestrom, Gravimetrie / heat flow,<br>gravimetry                               | BGR         |
| 9   | Goergens, Rainer             | Gerätetechnik / technician                                                       | BGR         |
| 10  | Kevel, Oliver                | BGR                                                                              |             |
| 11  | Wedemeyer, Henning           | BGR                                                                              |             |
| 12  | Sturm, Simone                | Logistik, Labor / logistics, lab.<br>technician                                  | BGR         |
| 13  | Villinger, Heiner, Prof. Dr. | Wärmestromsonde, Seismik / heat flow, seismics                                   | GeoB        |
| 14  | Kaul, Norbert, Dr.           | Wärmestromsonde, Seismik / heat flow, seismics                                   | GeoB        |
| 15  | Schwab, Arne                 | Wärmestromsonde, Seismik / heat flow, seismics                                   | GeoB        |
| 16  | Heesemann, Bernd             | Gerätetechnik / technician                                                       | GeoB        |
| 17  | Bösel, Janine                | Bathymetrie, Sedimentecholot / bathymetry sediment echosounding                  | GeoB        |
| 18  | Müller, Paulina              | GeoB                                                                             |             |
| 19  | Singh, Rasphal               | Bathymetrie, Sedimentecholot / bathymetry sediment echosounding                  | GeoB        |
| 20  | Kasten, Sabine, PD Dr.       | Porenwasser, Sedimente / pore water,<br>sediments                                | AWI         |
| 21  | Dohrmann, Ingrid             | Laborantin / lab technician                                                      | AWI         |
| 22  | Hartmann, Jan F.             | Porenwasser, Sedimente / pore water,                                             | AWI         |

|    |                          | sediments                                         |           |
|----|--------------------------|---------------------------------------------------|-----------|
| 23 | Fronzek, Julia           | Porenwasser, Sedimente / pore water,<br>sediments | AWI       |
| 24 | Ritter, Simon            | Porenwasser, Sedimente / pore water,<br>sediments | AWI       |
| 25 | Preuss, Inken-Marie, Dr. | Porenwasser, Sedimente / pore water,<br>sediments | AWI / JUB |
| 26 | Filsmair, Christoph      | Porenwasser, Sedimente / pore water,<br>sediments | JUB       |
| 27 | Kleint, Charlotte        | Porenwasser, Sedimente / pore water,<br>sediments | JUB       |
| 28 | Gerken, Jan              | Hydrodynamik JPI O / hydrodynamics<br>JPI-O       | IUP       |
| 29 | Purkiani, Kaveh          | Hydrodynamik JPI O / hydrodynamics<br>JPI-O       | IUP       |
| 30 | Janssen, Annika          | Marine Biodiversität / marine<br>biodiversity     | DZMB      |
| 31 | Uhlenkott, Katja         | Marine Biodiversität / marine<br>biodiversity     | DZMB      |

BGR: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

JUB: Jacobs University Bremen, Germany

AWI: Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, Germany

GeoB: Fachbereich Geowissenschaften, Universität Bremen, Germany

IUP: Institut für Umweltphysik, Ozeanographie, Universität Bremen, Germany

DZMB: Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven, Germany

List of stations during cruise SO240-FLUM. "UTC" indicates Universal Time Coordinated of bottom contact or max. depth of the respective device, affixes "B" and "E" after UTC for STROMER and dredge operations indicate beginning and end of bottom visibility or contact. Position and water depth refer to time of bottom contact or visibility, respectively. For moorings recovery, the release position is given. Water depth is from EM 122 if not noted otherways.

| Station Date | Date   |       | UTC    |        | Position                  |                             | Water<br>depth | Remarks                                                  |
|--------------|--------|-------|--------|--------|---------------------------|-----------------------------|----------------|----------------------------------------------------------|
| SO240-       | 2015   | start | bottom | end    | latitude (N)              | longitude (W)               | [m]            | Remarks                                                  |
| 01CTD        | 07.05. | 18:50 |        | 22:13  | 13° 10.52'                | 118° 12.19'                 | 4262           | 24 bottles filled with water samples                     |
| 02PS         | 07.05. | 22:37 |        |        | 13° 10.359'               | 118° 11.673'                | 4272           | Parasound profile with 8 knots                           |
|              | 08.05. |       |        | 00:02  | 13° 11.872'               | 118° 02.544'                | 4255           |                                                          |
| 03HF         | 08.05. | 01:03 |        |        | 13° 10.479'               | 118° 11.870'                | 4179           | Six (6) heat flow stations along profile,                |
|              | 08.05. |       |        | 14:15  | 13° 10.512                | 118° 07.855'                | 4284           | each ca. 1 km apart                                      |
| 04KG         | 08.05. | 14:51 | 16:12  | 17:48  | 13° 10.519'               | 118° 06.706'                | 4278           | 37 cm sediment, 12.6 kg/m <sup>2</sup> small nodules     |
| 05SL         | 08.05. | 18:06 | 19:29  | 21:34  | 13° 10.525'               | 118° 06.705'                | 4287           | 756 cm sediment core                                     |
| 06STR        | 08.05. | 22:20 | 00:51B |        | 13° 10.060'               | 118° 04.858'                | 4024           | Test of new video sledge STROMER                         |
|              | 09.05. |       | 02:21E | 03:50  | 13° 10.060                | 118° 04.560'                | 4075           |                                                          |
| 07HF         | 09.05. | 05:11 |        |        | 13° 10.525'               | 118° 07.862'                | 4313           | Four (4) heat flow stations along profile,               |
|              | 09.05. |       |        | 13:35  | 13° 10.528'               | 118° 06.741'                | 4273           | each ca. 1 km apart                                      |
| 08MUC        | 09.05. | 13:53 | 15:36  | 17:30  | 13° 10524'                | 118° 06.708'                | 4289           | 12/12 tubes filled, 29 cm sediment                       |
| 09KL         | 09.05. | 18:11 | 19:53  | 22:01  | 13° 10.524'               | 118° 10.104'                | 4335           | 1187 cm core length                                      |
| 10KG         | 09.05. |       | 23:31  |        | 13° 10.525'               | 118° 10.107'                | 4333           | 43 cm core length, 14.8 kg/m <sup>2</sup> large nodules  |
| 11SCS        | 10.05. |       |        |        | 13° 13.974'               | 117° 59.111'                | 4259           | Three single-channel seismic profiles                    |
|              |        |       |        | 13:00  | 13° 04.672'               | 118° 15.913'                | 4288           | Total length: 85 km                                      |
| 12HF         | 10.05. | 13.43 |        |        | 13° 05.043'               | 118° 14.891'                | 4291           | Seven (7) heat flow profiles, each ca. 1 km apa          |
|              | 11.05. | 10.10 |        | 02.08  | 13° 05.962'               | 118° 11.684'                | 4360           | Posidonia transponder 100 m over HF lance                |
| 13STR        |        | 03:01 | 04:19B | 02.00  | 13° 09.441'               | 118° 12.985'                | 3725           | Transect along NE slope of seamount                      |
| 13011        | 11.05. | 05.01 | 12:56E | 1/1.23 | 13° 09.441<br>13° 10.519' | 118°09.751'                 | 4313           |                                                          |
| 14MUC        | 11.05. | 15.12 | 12:50L |        | 13° 10.518'               | 118°10.108'                 | 4332           | 11/12 tubes filled, 35 cm sediment                       |
| 15KL         | 11.05. |       | 21:04  |        | 13° 10.328<br>13° 07.101' |                             | 4332           |                                                          |
|              |        |       |        |        |                           | 118° 07.657'                |                | 1161 cm core length                                      |
| 16KG         | 11.05. |       | 00:43  | 02:14  | 13° 07.098'               | 118° 07.655'                | 4319           | 43 cm core recovery, no nodules                          |
| 17SCS        | 12.05. | 03:01 |        | 45.00  | 13° 01.080'               | 118° 13.031'                | 4140           | Four single-channel seismic profiles                     |
|              | 12.05. | 10.10 | 17 10  |        | 13° 03.610'               | 118° 57.992'                | 4241           | Total length: 90 km                                      |
| 18MUC        | 12.05. |       | 17:48  |        | 13° 07.109'               | 118° 07.657'                | 4318           | 12/12 tube filled, 36 cm sediment                        |
| 19KL         | 12.05. | 20:10 | 21:46  | 23:32  | 13° 10.527'               | 118° 08.083'                | 4307           | All steel pipes were lost, only head weight<br>recovered |
| 20HF         | 13.05. | 00:43 |        |        | 12° 55.688'               | 118° 09.971'                | 4599           | Nine (9) heat flow stations along profile,               |
|              | 13.05. |       |        | 15:17  | 12° 59.862'               | 118° 10.946'                | 4375           | each ca. 1 km apart                                      |
| 21KG         | 13.05. | 16:48 | 18:07  | 19:37  | 13° 10.529'               | 118° 08.187'                | 4288           | 43 cm core length, 18.6 kg/m <sup>2</sup> large nodules  |
| 22KL         | 13.05. | 19:52 | 21:30  | 23:15  | 13° 10.527'               | 118°08.184'                 | 4302           | 1301 cm core length; repetition of 19KL                  |
| 23MUC        | 13.05. | 23:51 | 01:33  | 03:19  | 13° 10.526'               | 118° 08.186'                | 4305           | 10/12 tubes filled, 31 cm sediment                       |
| 24HF         | 14.05. | 04:35 |        |        | 13° 00.743'               | 118° 11.175'                | 4374           | Five (5) heat flow stations along profile,               |
|              | 14.05. |       |        | 14:44  | 13° 01.527'               | 118° 07.660                 | 4296           | each ca. 1 km apart                                      |
| 25KG         | 14.05. | 15:45 | 17:04  | 18:42  | 13° 07.013'               | 118° 09.845                 | 4331           | 43 cm core length, 18.2 kg/m <sup>2</sup> large nodules  |
| 26KG         | 14.05. |       | 20:33  |        | 13° 09.517'               | 118° 10.676'                | 4343           | 43 cm core length, 20.8 kg/m <sup>2</sup> large nodules  |
| 27GDS        |        |       | 00:03B |        | 13° 09.227'               | 118° 05.594'                | 4251           | Five Mn nodules, one indurated sediment with             |
|              | 15.05. |       | 01:51E | 03:15  | 13° 09.630'               | 118° 05.240'                | 4122           | 2 cm thick Fe-Mn crust                                   |
| 28STR        |        | 03:42 | 05:14B |        | 13° 10.007'               | 118° 04.869'                | 4035           | Transect along west slope of Teddy Bare SMt.             |
|              |        |       | 14:02E | 15:50  | 13° 10.527'               | 118° 08.936'                | 4298           | and E-W over sampling stations                           |
| 29SCS        | 15.05. | 17:20 |        |        | 12° 58.358'               | 118° 17.655'                | 4219           | Five (5) seismic profiles over working area 2            |
|              | 16.05  |       |        | 17.15  | 12° 58.414'               | 118° 26.409'                | 4238           | Total length: 200 km                                     |
| 30EM         | 16.05. | 17.17 |        | 17.10  | 12° 58.540'               | 118° 26.490'                | 4186           | Hydroacoustic mapping (EM 122) of seamounts              |
|              | 10.00. |       |        | 19:46  | 12° 57.760'               | 118° 21.204'                | 4289           | In the north of WA-2; length: 40 km                      |
| 31KL         | 16.05  | 20:31 | 22.02  |        | 12° 53.355'               | 118° 24.572'                | 4289           | 1174 cm core length with slump deposits?                 |
| 32HF         | 17.05. |       | 22.02  | 20.00  | 12° 33.355<br>12° 48.015' | 118° 24.572<br>118° 23.136' | 4209<br>4292   | Eight (8) heat flow stations along profile,              |
|              | 17.05. | 01.00 |        | 14.20  |                           |                             |                |                                                          |
| 2240         | 17.05  | 45.40 | 16.20  | 14:38  | 12° 51.223'               | 118° 23.967'                | 4274           | each ca. 1 km apart                                      |
| 33KG         |        | 15:12 |        | 18:10  | 12° 53.365'               | 118° 25.576'                | 4292           | 37 cm core length, 12.6 kg/m <sup>2</sup> small nodules  |
| 34MUC        | 17.05. |       |        | 21:48  | 12° 53.358'               | 118° 24.569'                | 4287           | 11/12 tubes filled, 22 cm sediment                       |
| 35SL         |        | 22:04 | 23:27  | 01:40  |                           | 118° 24.791'                | 4319           | 982 cm core length                                       |
| 36HF         | 18.05. | 01:56 |        |        | 12° 51.777'               | 118° 24.144'                | 4296           | Continuation of 32HF; five heat flow stations            |
|              |        |       |        |        | 12° 54.123'               | 118° 24.778'                | 4307           | each ca. 1 km apart                                      |
| 37MUC        |        | 40.57 | 12:32  | 11.00  | 12° 54.131'               | 118° 24.782'                | 4319           | 10/12 tubes filled, 28 cm sediment                       |

| SO-240, | List of | stations | continued |
|---------|---------|----------|-----------|
|---------|---------|----------|-----------|

| Station Date  |        | UTC                         |           | Position                   |                              | Water<br>depth | Remarks                                                                                                              |
|---------------|--------|-----------------------------|-----------|----------------------------|------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|
| SO240-        | 2015   | start bottom                | end       | latitude (N)               | longitude (W)                | [m]            | Nelliaiks                                                                                                            |
| 38KG          | 18.05. | 14:36 15:58                 | 17:33     | 12° 54.129'                | 118° 24.777'                 | 4320           | 41 cm core length, 15.8 kg/m <sup>2</sup> small nodules                                                              |
| 39PS          | 18.05. | 18:16                       |           | 12° 57.344'                | 118° 27.966'                 | 4296           | Short profile over donut seamounts to map                                                                            |
|               |        |                             | 19:33     | 13° 03.891'                | 118° 26.244'                 | 4188           | Sediment thickness in their craters                                                                                  |
| 40STR         | 18.05. | 18:05 22:05B                |           | 13° 02.020'                | 118° 26.744                  | 3712           | Video mapping in seamount crater, 4 MAPRS a                                                                          |
|               |        | 00:59E                      |           | 13° 02.912'                | 118° 26.515'                 | 3718           | 100, 200, 300, 400m; 2 water samples                                                                                 |
| 41STR         | 19.05. | 03:25 05:00B                |           | 12° 56.018'                | 118° 26.157'                 | 3884           | Video mapping of seamount flank and along                                                                            |
|               |        | 14:00E                      |           | 12° 51.978'                | 118° 24.180'                 | 4275           | 32/36 HF profile                                                                                                     |
| 42SL          |        | 16:09 17:38                 | 19:20     | 12° 51.249'                | 118° 23.976'                 | 4290           | 1036 cm core length                                                                                                  |
| 43MUC         |        | 19:21 21:04                 | 22:53     | 12° 51.247'                | 118° 23.980'                 | 4289           | 12/12 tube filled, 33 cm sediment                                                                                    |
| 44KG          |        | 23:01 00:22                 | 02:03     | 12° 51.243'                | 118° 23.978'                 | 4289           | 43 cm core length, 17.8 kg/m <sup>2</sup> medium nodules                                                             |
| 45HF          | 20.05. | 02:57                       | 45.50     | 12° 53.519'                | 118° 30.163'                 | 4226           | Seven (7) heat flow stations along profile,                                                                          |
|               | 20.05  | 40.00 47.50                 | 15:53     | 12° 54.266'                | 118° 26.008'                 | 4290           | each ca. 1 km apart; 1 station failed                                                                                |
| 46KG          |        | 16:33 17:53                 | 19:31     | 12° 52.266'                | 118° 24.271'                 | 4275<br>4290   | 39 cm core length, 18.4 kg/m <sup>2</sup> small-med. nods<br>43 cm core length, 23.4 kg/m <sup>2</sup> large nodules |
| 47KG          |        | 19:59 21:15                 | 22:53     | 12° 50.727'<br>12° 48.749' | 118° 23.834'                 | 4290<br>4313   | 43 cm core length, 23.4 kg/m large nodules<br>42 cm core length, 23.0 kg/m <sup>2</sup> medlarge nods.               |
| 48KG<br>49STR |        | 23:25 00:43<br>03:00 04:40B | -         | 12° 48.749<br>12° 51.980'  | 118° 23.295'<br>118° 24.170' | 4313           | Continuation of station 41STR                                                                                        |
| 49511         | 21.05. | 13:04E                      |           | 12° 49.056'                | 118° 24.170<br>118° 23.374'  | 4273           | Continuation of Station 4131K                                                                                        |
| 50CTD         | 21.05  |                             | 21:14     | 12° 49.030<br>13° 10.020'  | 118° 23.374<br>118° 04.949'  | 4026           | CTD profile & water samples at Teddy Bare Sm                                                                         |
| 51SL          |        | 21:42 23:08                 |           | 13° 10.020'<br>13° 10.526' | 118° 04.949<br>118° 06.584'  | 4020           | 537 cm core length                                                                                                   |
| 52HF          |        | 01:13                       | 01.07     | 13° 10.520<br>13° 10.698'  | 118° 06.400'                 | 4287           | Nine (9) heat flow stations around Teddy Bare                                                                        |
| 52111         | 22.00. | 01.15                       | 14:26     | 13° 10.090<br>13° 09.367'  | 118° 03.230'                 | 4283           | each ca. 1 km apart                                                                                                  |
| 53SL          | 22.05  | 15:09 16:33                 |           | 13° 09.507<br>13° 10.508'  | 118° 03.230<br>118° 06.110'  | 4273           | 482 cm core length, closest to Teddy Bare Smt.                                                                       |
| 54SCS         |        | 20:54                       | 10.00     | 12° 56.437'                | 118° 28.025'                 | 4327           | Three (3) seismic profiles over working area 3                                                                       |
| 04000         | 23.05. | 20.04                       | 22:00     | 13° 20.258'                | 119° 16.466'                 | 4407           | Total length: 220 km                                                                                                 |
| 55CTD         |        | 00:31 02:18                 |           | 12° 55.596'                | 118° 58.433'                 | 3870           | CTD profile to calibrate EM 122                                                                                      |
| 56HF          |        | 05:09                       | 00.40     | 12° 52.802'                | 119° 08.344'                 | 4292           | Seven (7) heat flow stations in pits of suspected                                                                    |
| 00111         | 2      | 00.00                       | 14:39     | 12° 54.545'                | 119° 08.745'                 | 4286           | hydrothermal origin; each ca. 1 km apart                                                                             |
| 57KG          | 24.05  | 15:19 16:41                 | 18:12     | 12° 53.217'                | 119° 08.352'                 | 4310           | 43 cm core length, no nodules                                                                                        |
| 58SL          |        | 18:19 19:39                 | 21:30     | 12° 53.216'                | 119° 08.351'                 | 4309           | 1244 cm core length                                                                                                  |
| 59MUC         |        | 21:31 23:43                 |           | 12° 53.216'                | 119° 08.344'                 | 4306           | 12/12 tubes filled, 38 cm sediment                                                                                   |
| 60HF          |        | 02:22                       |           | 12° 55.007'                | 119° 08.965'                 | 4280           | Continuation of profile 56HF; five (5) heat flow                                                                     |
|               |        |                             | 13:10     | 12° 57.457'                | 119° 09.626'                 | 4273           | Stations, each ca. 1 km apart                                                                                        |
| 61MUC         | 25:05  | 13:36 15:16                 | 17:01     | 12° 56.109'                | 119° 08.871'                 | 4293           | 12/12 tubes filled, 42 cm sediment                                                                                   |
| 62KG          | 25.05. | 17:16 18:40                 | 20:13     | 12° 56.107'                | 119° 08.870'                 | 4294           | 44 cm core length, no nodules                                                                                        |
| 63PS          | 25.05. | 21:05                       |           | 12° 55.635'                | 119° 08.998'                 | 4294           | Short profile over small depression to                                                                               |
|               |        |                             | 22:34     | 13° 02.965'                | 119° 08.829'                 | 4348           | identify sediment structures                                                                                         |
| 64EM          | 25.05. | 22:35                       |           | 13° 02.440'                | 119° 08.820'                 | 4360           | EM 122 mapping of large, dominating seamount                                                                         |
|               | 26.05. |                             | 18:11     | 12° 55.760'                | 119° 03.130'                 | 4363           | NW of working area 3                                                                                                 |
| 65SL          | 26.05. | 19:07 20:29                 | 22:19     | 12° 56.107'                | 119° 08.884'                 | 4293           | 1275 m core length                                                                                                   |
| 66KG          | 27.05. | 00:06 01:24                 | 02:59     | 12° 40.311'                | 119° 11.520'                 | 4406           | 41 cm core length, 4.1 kg/m <sup>2</sup> small nodules                                                               |
| 67HF          | 27.05. | 03:37                       |           | 12° 39.800'                | 119° 13.480'                 | 4244           | Seven (7) heat flow stations over tectonically                                                                       |
|               |        |                             | 14:21     | 12° 40.376'                | 119° 11.203'                 | 4399           | controlled basin structure; each ca. 1 km apart                                                                      |
| 68MUC         | 27.05. | 14:50 16:33                 | 18:29     | 12° 40.307'                | 119° 11.514'                 | 4408           | 12/12 tubes filled, 36 cm sediment                                                                                   |
| 69SL          | 27.05. | 18:54 20:16                 | 22:00     | 12° 39.855'                | 119° 13.374'                 | 4275           | 1265 cm core length                                                                                                  |
| 70MUC         | 27.05. | 22:00 23:34                 | 01:16     | 12° 39.857                 | 119° 13.385'                 | 4270           | 12/12 tubes filled, 35 cm sediment                                                                                   |
| 71HF          | 28.05. | 02:22                       |           | 12° 37.460'                | 119° 23.158'                 | 4283           | Eight (8) heat flow stations over tectonically                                                                       |
|               |        |                             | 14:17     | 12° 38.219'                | 119° 20.085'                 | 4207           | controlled basin structure; each ca. 1 km apart                                                                      |
| 72SL          | 28.05. | 18:51 20:15                 | 22:00     | 12° 55.597'                | 119° 08.833'                 | 4294           | 853 cm core length                                                                                                   |
| 73KG          | 28.05. | 22:03 23:22                 | 00:56     | 12° 55.601'                | 119° 08.829'                 | 4295           | 41 cm core length, no nodules                                                                                        |
| 74MUC         | 29.05. | 01:07 02:44                 | 04:25     | 12° 55.601'                | 119° 08.830'                 | 4295           | 12/12 tubes filled, 37 cm sediment                                                                                   |
| -             |        | -                           | hurricane | "Andres", sail             | to 10° N / 120° W            |                | ally to wait for the hurricane to pass by                                                                            |
| 75EMPS        |        | 20:39                       |           | 09° 59.366'                | 119° 59.990'                 | 4359           | EM 122 mapping to select area without                                                                                |
|               | 30.05. |                             | 11:45     | 09° 52.020'                | 120° 35.110'                 | 4379           | seamount for HF calibration                                                                                          |
| 76HF-         | 30.05. | 19:01                       |           | 09° 52.027'                | 120° 32.098'                 | 4420           | Test of BGR-Heat Flow Lance; aborted due to                                                                          |
| BGR           |        |                             | 20:00     | 09° 52.036'                | 120° 32.101'                 | 4420           | technical problems                                                                                                   |
| 77HF          | 30.05. | 20:37                       |           | 09° 52.033'                | 120° 32.104'                 | 4405           | Four (4) heat flow stations for calibration                                                                          |
|               | 31.05. |                             | 03:23     | 09° 52.034'                | 120° 31.197'                 | 4360           | without seamount influence; ea. ~ 0.5 km apart                                                                       |
|               |        |                             |           |                            |                              |                |                                                                                                                      |

#### SO-240, List of stations continued

| Station Date |        |         | UTC      |                         | Posi                        | Position                                    |                      | Demorko                                                                                     |
|--------------|--------|---------|----------|-------------------------|-----------------------------|---------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|
| SO-240       | 2015   | start   | bottom   | end                     | latitude (N)                | longitude (W)                               | depth<br>[m]         | Remarks                                                                                     |
| Transit      | 31.05. | 17:00   |          |                         | 09° 52.017'                 | 120° 32.010'                                |                      | Transit to working area 4                                                                   |
|              | 01.06  |         |          | 17:00                   | 11° 45.997'                 | 116° 32.005'                                |                      |                                                                                             |
| 79CTD        | 01.06. |         | 18:26    | 19:09                   | 11° 45.997'                 | 116° 32.005'                                | 4327                 | CTD to 2000 m for EM122 calibration                                                         |
| 80EM         | 01.06. | 19:34   |          |                         | 11° 45.584'                 | 116° 31.839'                                |                      | EM 122 mapping of basin in WA-4 to identify                                                 |
|              |        | ~ ~ ~ ~ | 00.45    | 22:38                   | 11° 46.000'                 | 116° 29.000'                                | 1055                 | small pits (black spots in side-scan sonar)                                                 |
| 81SL         |        | 23:21   | 00:45    | 02:13                   | 11° 50.064'                 | 116° 32.890'                                | 4355                 | 1346 cm core length                                                                         |
| 82SCS        | 02.06. | 03:50   |          | 14:29                   | 11° 42.977'                 | 116° 26.596'<br>117° 17.284'                |                      | Three (3) seismic profiles over working area 4 a                                            |
| 83TC         | 02.06. | 17.50   |          | 14:29<br>20:27          | 11° 49.285'<br>11° 50.450'  | 117° 17.284<br>116° 57.427'                 | 4098                 | 5, total length: 95 km                                                                      |
| 840BM        | 02.06. |         |          | 20.27                   | 11° 50.450<br>11° 51.355'   | 116° 57.427<br>116° 58.704'                 | 4098                 | Recovery of thermistor chain of SO239 # 2<br>Recovery of mooring KM14-037OBM                |
| 850BM        | 02.00. |         |          | 23:08                   | 11° 49.245'                 | 116° 56.837'                                | 4093                 | Recovery of mooring KM14-0370BM<br>Recovery of mooring KM14-0350BM                          |
| 860BM        | 02.00. |         |          | 00:30                   | 11° 54.064'                 | 116° 57.842'                                | 4107                 | Recovery of mooring KM14-034OBM                                                             |
| 87HF         | 03.06. |         |          | 00.00                   | 11° 50.078'                 | 116° 32.868'                                | 4351                 | Six (6) heat flow stations over small basins with                                           |
|              |        | 02.00   |          | 13:00                   | 11° 48.063'                 | 116° 31.135'                                | 4313                 | with black spots; each ca. 1 km apart                                                       |
| 880BM        | 03.06. | 15:27   |          | 16:29                   | 11° 50.954'                 | 117° 01.195'                                | 4135                 | Recovery of mooring KM14-036OBM                                                             |
| 89DOS        | 03.06. |         |          | 18:53                   | 11° 51.826'                 | 116° 59.992'                                | 4112                 | Recovery of SO239 # 44 DOS-2 lander                                                         |
| 90BoBo       | 03.06. | 19:18   |          | 21:30                   | 11° 51.029'                 | 116° 59.526'                                | 4121                 | Recovery of SO239 # 4 BoBo lander                                                           |
| 91KG         | 03.06. | 22:04   | 23:18    | 00:54                   | 11° 49.263'                 | 117° 03.835'                                | 4131                 | 42 cm core length, 21.3 kg/m2 small-med. nod.                                               |
| 92HF         | 04.06. | 01:15   |          |                         | 11° 49.251'                 | 117° 03.344'                                | 4129                 | Six (6) heat flow stations over distinct fault                                              |
|              |        |         |          | 12:31                   | 11° 49.265'                 | 117° 06.068'                                | 4138                 | structures; each ca. 1 km apart                                                             |
| 93CTD        | 04.06. | 13:35   |          |                         | 11° 53.850'                 | 116° 57.783'                                | 4101                 | CTD tow-yo station for JPI-O, tow yo between                                                |
| Tow-Yo       | 05.06. |         |          | 06:31                   | 11° 49.089'                 | 117° 02.971'                                | 4132                 | 50 and 500 m above bottom @ 0.5 m/s, 0.5 kn                                                 |
| 94HF         | 05.06. | 07:43   |          |                         | 11° 49.262'                 | 117° 12.673'                                | 4153                 | Five (5) heat flow stations over distinct fault                                             |
|              |        |         |          | 15:14                   | 11° 49.277'                 | 117° 14.288'                                | 4157                 | structure near seamounts; each ca. 1 km apart                                               |
| 95MUC        | 05.06. | 16:49   | 18:24    | 20:11                   | 11° 49.262'                 | 117° 13.197'                                | 4150                 | 12/12 tubes filled, 31 cm sediment                                                          |
| 96SL         | 05.06. | 20:11   | 21:37    | 23:20                   | 11° 49.260'                 | 117° 13.195'                                | 4145                 | 980 cm core length                                                                          |
| 97CTD        | 06.06. | 00:45   |          |                         | 11° 51.490'                 | 117° 00.233'                                | 4118                 | JPI-O station, vessel at station, 4 cycles throug                                           |
| Yo-Yo        | 06.06. |         |          | 14:34                   | 11° 51.493'                 | 117° 00.188'                                | 4116                 | complete water column @ 0.7 m/s                                                             |
| 980BM        | 06.06. |         |          | 15:16                   | 11° 53.915'                 | 116° 57.733'                                | 4108                 | Redeployment of mooring KM14-034OBM                                                         |
| 990BM        | 06.06. |         |          | 16:04                   | 11° 48.987'                 | 116° 56.669'                                | 4120                 | Redeployment of mooring KM14-035OBM                                                         |
| 100OBM       |        |         |          | 17:16                   | 11° 50.619'                 | 117° 01.184'                                | 4122                 | Redeployment of mooring KM14-036OBM                                                         |
| 101OBM       |        |         |          | 18:32                   | 11° 50.447'                 | 116° 58.317'                                | 4088                 | Redeployment of mooring KM14-037OBM                                                         |
| 102OBM       |        |         | 00.00    | 22:21                   | 11° 50.673'                 | 116° 58.324'                                | 4087                 | Triangulation of mooring positions                                                          |
| 103SL        | 06.06. |         |          | 02:14                   | 11° 49.253'                 | 117° 03.847'                                | 4137                 | 977 cm core length; for permeability analysis                                               |
| 104LIR       | 07.06. | -       | 03:52    | 10:18                   | 11° 49.272'                 | 117° 03.840'                                | 4133                 | In situ shear strength of sediments @4 location                                             |
| 105EM        | 07.06. | 10.24   |          | 15:11                   | 11° 49.332'<br>11° 45.426'  | 117° 04.546'<br>116° 34.230'                | 4134<br>4073         | EM 122 mapping of central working area 4                                                    |
| 106MUC       | 07.06  | 15.40   | 17.27    | 19:18                   | 11° 43.420<br>11° 50.079'   | 116° 34.230<br>116° 32.900'                 | 4073                 | 12/12 tubes filled, 40 cm sediment                                                          |
| 107KG        | 07.06. |         |          | 22:20                   | 11° 50.070'                 | 116° 32.907'                                | 4351                 | 43 cm core length, nodule layers at 16, 32 cm                                               |
| 108SL        | 07.06. |         |          | 02:04                   | 11° 48.796'                 | 116° 31.767'                                | 4326                 | 1038 cm core length                                                                         |
| 109MUC       |        |         |          | 05:35                   | 11° 48.791'                 | 116° 31.760'                                | 4327                 | 12/12 tubes filled, 37 cm sediment                                                          |
| 110EM        | 08.06. |         |          | 00.00                   | 11° 55.723'                 | 116° 33.200'                                | 4017                 | EM 122 mapping of central working area 4                                                    |
| 1102111      | 00.00. | 00.21   |          | 09:22                   | 11° 54.374'                 | 116° 56.731'                                | 4107                 |                                                                                             |
| 111CTD       | 08.06. | 09:57   |          |                         | 11° 50.393'                 | 116° 56.673'                                | 4131                 | JPI-O station, vessel at station, 4 cycles throug                                           |
| Yo-yo        | 09.06. |         |          | 02:10                   | 11° 49.670'                 | 116° 56.331'                                | 4115                 | complete water column @ 0.7 m/s                                                             |
| 112EM        | 09.06. | 02:47   |          |                         | 11° 54.370'                 | 116° 56.500'                                | 4100                 | EM 122 mapping of central working area 4                                                    |
|              |        |         |          | 04:16                   | 11° 54.540'                 | 117° 08.709'                                | 4114                 |                                                                                             |
| Transit to   | workin | g area  | 1 (Teddy | Bare Sea                | amount) at 13° <sup>.</sup> | 11.116' N / 118° (                          | 05.137' V            | V                                                                                           |
| 113STR       | 09.06. | 14:04   | 15:35B   |                         | 13° 11.453'                 | 118° 05.231'                                | 4222                 | Video mapping along western basis of small                                                  |
|              |        |         | 19:43E   | 21:30                   | 13° 10.723                  | 118° 05.216'                                | 4161                 | seamount north of Teddy Bare SMt.                                                           |
| 114HF        | 09.06. | 22:08   |          |                         | 13° 11.092'                 | 118° 06.004'                                | 4266 m               | Heat flow station at Teddy Bare Seamount;                                                   |
| -BGR         |        |         |          | 02:05                   | 13° 11.106'                 | 118° 05.772'                                | 4258 m               | aborted at first waypoint due to tech. problems                                             |
| 115HF        | 10.06. | 02:44   |          |                         | 13° 11.103'                 | 118° 05.770'                                | 4256                 | Eight(8) heat flow stations along foot of small                                             |
| -BGR         |        |         |          | 15:30                   | 13° 10.710'                 | 118° 05.300'                                | 4214                 | seamount north of Teddy Bare SMt.                                                           |
| 11614110     | 10.06. | 15:58   | 17:40    | 19:21                   | 13° 11.098'                 | 118° 06.003'                                | 4270                 | 12/12 tubes filled, 31 cm sediment                                                          |
| TIONIOC      |        |         | ~~ ~~    | 00.40                   | 120 11 102'                 | 1100 05 002                                 | 4271                 | Co. Currente la sette a la sin a la set                                                     |
| 117SL        | 10.06. | 19:30   | 20:56    | 22:42                   | 13° 11.103'                 | 118° 05.992'                                |                      | Ca. 6 m core length, steel pipe bent                                                        |
|              | 10.06. | 22:52   |          | 22:42<br>01:46<br>05:25 | 13° 11.103<br>13° 11.102'   | 118° 05.992<br>118° 05.996'<br>118° 10.806' | 4271<br>4272<br>3502 | 40 cm core length, 12.6 kg/m <sup>2</sup> small nodules<br>CTD station over larger seamount |

### SO-240, List of stations continued

| Station | Date   |       | UTC    |       | Position     |               | Water<br>depth | Domosko                             |
|---------|--------|-------|--------|-------|--------------|---------------|----------------|-------------------------------------|
| SO-240  | 2015   | start | bottom | end   | latitude (N) | longitude (W) | [m]            | Remarks                             |
| 120 GDS | 11.06. | 06:41 | 07:55B |       | 13° 09.077'  | 118° 12.660   | 4010           | Sampling at seamount in WA-1        |
|         |        |       | 11:01E | 12:27 | 13° 09.349'  | 118° 12.894'  | 3786           | only Fe-Mn crusts sampled, no rocks |
| 121MUC  | 11.06. | 13:24 | 15:00  | 16:50 | 13° 11.235'  | 118° 03.623'  | 4268           | 12/12 tubes filled, 23 cm sediment  |

EM: EM 122 swath echosounder mapping SCS: single channel seismics

PS: parasound mapping

HF: heat flow sensor, University Bremen

HF-BGR: heat flow sensor, BGR:

LIR: *in-situ* shear strength of sediments

KL: piston corer

SL: gravity corer

KG: box corer

MUC: multiple corer

GDS: rock dredge

STR: video sledge STROMER

CTD: CTD/rosette water sampler

OBM: ocean bottom oorings